PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/array_api/tests/
Upload File :
Current File : //opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/array_api/tests/test_array_object.py
import operator

from numpy.testing import assert_raises, suppress_warnings
import numpy as np
import pytest

from .. import ones, asarray, reshape, result_type, all, equal
from .._array_object import Array
from .._dtypes import (
    _all_dtypes,
    _boolean_dtypes,
    _real_floating_dtypes,
    _floating_dtypes,
    _complex_floating_dtypes,
    _integer_dtypes,
    _integer_or_boolean_dtypes,
    _real_numeric_dtypes,
    _numeric_dtypes,
    int8,
    int16,
    int32,
    int64,
    uint64,
    bool as bool_,
)


def test_validate_index():
    # The indexing tests in the official array API test suite test that the
    # array object correctly handles the subset of indices that are required
    # by the spec. But the NumPy array API implementation specifically
    # disallows any index not required by the spec, via Array._validate_index.
    # This test focuses on testing that non-valid indices are correctly
    # rejected. See
    # https://data-apis.org/array-api/latest/API_specification/indexing.html
    # and the docstring of Array._validate_index for the exact indexing
    # behavior that should be allowed. This does not test indices that are
    # already invalid in NumPy itself because Array will generally just pass
    # such indices directly to the underlying np.ndarray.

    a = ones((3, 4))

    # Out of bounds slices are not allowed
    assert_raises(IndexError, lambda: a[:4])
    assert_raises(IndexError, lambda: a[:-4])
    assert_raises(IndexError, lambda: a[:3:-1])
    assert_raises(IndexError, lambda: a[:-5:-1])
    assert_raises(IndexError, lambda: a[4:])
    assert_raises(IndexError, lambda: a[-4:])
    assert_raises(IndexError, lambda: a[4::-1])
    assert_raises(IndexError, lambda: a[-4::-1])

    assert_raises(IndexError, lambda: a[...,:5])
    assert_raises(IndexError, lambda: a[...,:-5])
    assert_raises(IndexError, lambda: a[...,:5:-1])
    assert_raises(IndexError, lambda: a[...,:-6:-1])
    assert_raises(IndexError, lambda: a[...,5:])
    assert_raises(IndexError, lambda: a[...,-5:])
    assert_raises(IndexError, lambda: a[...,5::-1])
    assert_raises(IndexError, lambda: a[...,-5::-1])

    # Boolean indices cannot be part of a larger tuple index
    assert_raises(IndexError, lambda: a[a[:,0]==1,0])
    assert_raises(IndexError, lambda: a[a[:,0]==1,...])
    assert_raises(IndexError, lambda: a[..., a[0]==1])
    assert_raises(IndexError, lambda: a[[True, True, True]])
    assert_raises(IndexError, lambda: a[(True, True, True),])

    # Integer array indices are not allowed (except for 0-D)
    idx = asarray([[0, 1]])
    assert_raises(IndexError, lambda: a[idx])
    assert_raises(IndexError, lambda: a[idx,])
    assert_raises(IndexError, lambda: a[[0, 1]])
    assert_raises(IndexError, lambda: a[(0, 1), (0, 1)])
    assert_raises(IndexError, lambda: a[[0, 1]])
    assert_raises(IndexError, lambda: a[np.array([[0, 1]])])

    # Multiaxis indices must contain exactly as many indices as dimensions
    assert_raises(IndexError, lambda: a[()])
    assert_raises(IndexError, lambda: a[0,])
    assert_raises(IndexError, lambda: a[0])
    assert_raises(IndexError, lambda: a[:])

def test_operators():
    # For every operator, we test that it works for the required type
    # combinations and raises TypeError otherwise
    binary_op_dtypes = {
        "__add__": "numeric",
        "__and__": "integer_or_boolean",
        "__eq__": "all",
        "__floordiv__": "real numeric",
        "__ge__": "real numeric",
        "__gt__": "real numeric",
        "__le__": "real numeric",
        "__lshift__": "integer",
        "__lt__": "real numeric",
        "__mod__": "real numeric",
        "__mul__": "numeric",
        "__ne__": "all",
        "__or__": "integer_or_boolean",
        "__pow__": "numeric",
        "__rshift__": "integer",
        "__sub__": "numeric",
        "__truediv__": "floating",
        "__xor__": "integer_or_boolean",
    }
    # Recompute each time because of in-place ops
    def _array_vals():
        for d in _integer_dtypes:
            yield asarray(1, dtype=d)
        for d in _boolean_dtypes:
            yield asarray(False, dtype=d)
        for d in _floating_dtypes:
            yield asarray(1.0, dtype=d)


    BIG_INT = int(1e30)
    for op, dtypes in binary_op_dtypes.items():
        ops = [op]
        if op not in ["__eq__", "__ne__", "__le__", "__ge__", "__lt__", "__gt__"]:
            rop = "__r" + op[2:]
            iop = "__i" + op[2:]
            ops += [rop, iop]
        for s in [1, 1.0, 1j, BIG_INT, False]:
            for _op in ops:
                for a in _array_vals():
                    # Test array op scalar. From the spec, the following combinations
                    # are supported:

                    # - Python bool for a bool array dtype,
                    # - a Python int within the bounds of the given dtype for integer array dtypes,
                    # - a Python int or float for real floating-point array dtypes
                    # - a Python int, float, or complex for complex floating-point array dtypes

                    if ((dtypes == "all"
                         or dtypes == "numeric" and a.dtype in _numeric_dtypes
                         or dtypes == "real numeric" and a.dtype in _real_numeric_dtypes
                         or dtypes == "integer" and a.dtype in _integer_dtypes
                         or dtypes == "integer_or_boolean" and a.dtype in _integer_or_boolean_dtypes
                         or dtypes == "boolean" and a.dtype in _boolean_dtypes
                         or dtypes == "floating" and a.dtype in _floating_dtypes
                        )
                        # bool is a subtype of int, which is why we avoid
                        # isinstance here.
                        and (a.dtype in _boolean_dtypes and type(s) == bool
                             or a.dtype in _integer_dtypes and type(s) == int
                             or a.dtype in _real_floating_dtypes and type(s) in [float, int]
                             or a.dtype in _complex_floating_dtypes and type(s) in [complex, float, int]
                        )):
                        if a.dtype in _integer_dtypes and s == BIG_INT:
                            assert_raises(OverflowError, lambda: getattr(a, _op)(s))
                        else:
                            # Only test for no error
                            with suppress_warnings() as sup:
                                # ignore warnings from pow(BIG_INT)
                                sup.filter(RuntimeWarning,
                                           "invalid value encountered in power")
                                getattr(a, _op)(s)
                    else:
                        assert_raises(TypeError, lambda: getattr(a, _op)(s))

                # Test array op array.
                for _op in ops:
                    for x in _array_vals():
                        for y in _array_vals():
                            # See the promotion table in NEP 47 or the array
                            # API spec page on type promotion. Mixed kind
                            # promotion is not defined.
                            if (x.dtype == uint64 and y.dtype in [int8, int16, int32, int64]
                                or y.dtype == uint64 and x.dtype in [int8, int16, int32, int64]
                                or x.dtype in _integer_dtypes and y.dtype not in _integer_dtypes
                                or y.dtype in _integer_dtypes and x.dtype not in _integer_dtypes
                                or x.dtype in _boolean_dtypes and y.dtype not in _boolean_dtypes
                                or y.dtype in _boolean_dtypes and x.dtype not in _boolean_dtypes
                                or x.dtype in _floating_dtypes and y.dtype not in _floating_dtypes
                                or y.dtype in _floating_dtypes and x.dtype not in _floating_dtypes
                                ):
                                assert_raises(TypeError, lambda: getattr(x, _op)(y))
                            # Ensure in-place operators only promote to the same dtype as the left operand.
                            elif (
                                _op.startswith("__i")
                                and result_type(x.dtype, y.dtype) != x.dtype
                            ):
                                assert_raises(TypeError, lambda: getattr(x, _op)(y))
                            # Ensure only those dtypes that are required for every operator are allowed.
                            elif (dtypes == "all" and (x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes
                                                      or x.dtype in _numeric_dtypes and y.dtype in _numeric_dtypes)
                                or (dtypes == "real numeric" and x.dtype in _real_numeric_dtypes and y.dtype in _real_numeric_dtypes)
                                or (dtypes == "numeric" and x.dtype in _numeric_dtypes and y.dtype in _numeric_dtypes)
                                or dtypes == "integer" and x.dtype in _integer_dtypes and y.dtype in _integer_dtypes
                                or dtypes == "integer_or_boolean" and (x.dtype in _integer_dtypes and y.dtype in _integer_dtypes
                                                                       or x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes)
                                or dtypes == "boolean" and x.dtype in _boolean_dtypes and y.dtype in _boolean_dtypes
                                or dtypes == "floating" and x.dtype in _floating_dtypes and y.dtype in _floating_dtypes
                            ):
                                getattr(x, _op)(y)
                            else:
                                assert_raises(TypeError, lambda: getattr(x, _op)(y))

    unary_op_dtypes = {
        "__abs__": "numeric",
        "__invert__": "integer_or_boolean",
        "__neg__": "numeric",
        "__pos__": "numeric",
    }
    for op, dtypes in unary_op_dtypes.items():
        for a in _array_vals():
            if (
                dtypes == "numeric"
                and a.dtype in _numeric_dtypes
                or dtypes == "integer_or_boolean"
                and a.dtype in _integer_or_boolean_dtypes
            ):
                # Only test for no error
                getattr(a, op)()
            else:
                assert_raises(TypeError, lambda: getattr(a, op)())

    # Finally, matmul() must be tested separately, because it works a bit
    # different from the other operations.
    def _matmul_array_vals():
        for a in _array_vals():
            yield a
        for d in _all_dtypes:
            yield ones((3, 4), dtype=d)
            yield ones((4, 2), dtype=d)
            yield ones((4, 4), dtype=d)

    # Scalars always error
    for _op in ["__matmul__", "__rmatmul__", "__imatmul__"]:
        for s in [1, 1.0, False]:
            for a in _matmul_array_vals():
                if (type(s) in [float, int] and a.dtype in _floating_dtypes
                    or type(s) == int and a.dtype in _integer_dtypes):
                    # Type promotion is valid, but @ is not allowed on 0-D
                    # inputs, so the error is a ValueError
                    assert_raises(ValueError, lambda: getattr(a, _op)(s))
                else:
                    assert_raises(TypeError, lambda: getattr(a, _op)(s))

    for x in _matmul_array_vals():
        for y in _matmul_array_vals():
            if (x.dtype == uint64 and y.dtype in [int8, int16, int32, int64]
                or y.dtype == uint64 and x.dtype in [int8, int16, int32, int64]
                or x.dtype in _integer_dtypes and y.dtype not in _integer_dtypes
                or y.dtype in _integer_dtypes and x.dtype not in _integer_dtypes
                or x.dtype in _floating_dtypes and y.dtype not in _floating_dtypes
                or y.dtype in _floating_dtypes and x.dtype not in _floating_dtypes
                or x.dtype in _boolean_dtypes
                or y.dtype in _boolean_dtypes
                ):
                assert_raises(TypeError, lambda: x.__matmul__(y))
                assert_raises(TypeError, lambda: y.__rmatmul__(x))
                assert_raises(TypeError, lambda: x.__imatmul__(y))
            elif x.shape == () or y.shape == () or x.shape[1] != y.shape[0]:
                assert_raises(ValueError, lambda: x.__matmul__(y))
                assert_raises(ValueError, lambda: y.__rmatmul__(x))
                if result_type(x.dtype, y.dtype) != x.dtype:
                    assert_raises(TypeError, lambda: x.__imatmul__(y))
                else:
                    assert_raises(ValueError, lambda: x.__imatmul__(y))
            else:
                x.__matmul__(y)
                y.__rmatmul__(x)
                if result_type(x.dtype, y.dtype) != x.dtype:
                    assert_raises(TypeError, lambda: x.__imatmul__(y))
                elif y.shape[0] != y.shape[1]:
                    # This one fails because x @ y has a different shape from x
                    assert_raises(ValueError, lambda: x.__imatmul__(y))
                else:
                    x.__imatmul__(y)


def test_python_scalar_construtors():
    b = asarray(False)
    i = asarray(0)
    f = asarray(0.0)
    c = asarray(0j)

    assert bool(b) == False
    assert int(i) == 0
    assert float(f) == 0.0
    assert operator.index(i) == 0

    # bool/int/float/complex should only be allowed on 0-D arrays.
    assert_raises(TypeError, lambda: bool(asarray([False])))
    assert_raises(TypeError, lambda: int(asarray([0])))
    assert_raises(TypeError, lambda: float(asarray([0.0])))
    assert_raises(TypeError, lambda: complex(asarray([0j])))
    assert_raises(TypeError, lambda: operator.index(asarray([0])))

    # bool should work on all types of arrays
    assert bool(b) is bool(i) is bool(f) is bool(c) is False

    # int should fail on complex arrays
    assert int(b) == int(i) == int(f) == 0
    assert_raises(TypeError, lambda: int(c))

    # float should fail on complex arrays
    assert float(b) == float(i) == float(f) == 0.0
    assert_raises(TypeError, lambda: float(c))

    # complex should work on all types of arrays
    assert complex(b) == complex(i) == complex(f) == complex(c) == 0j

    # index should only work on integer arrays
    assert operator.index(i) == 0
    assert_raises(TypeError, lambda: operator.index(b))
    assert_raises(TypeError, lambda: operator.index(f))
    assert_raises(TypeError, lambda: operator.index(c))


def test_device_property():
    a = ones((3, 4))
    assert a.device == 'cpu'

    assert all(equal(a.to_device('cpu'), a))
    assert_raises(ValueError, lambda: a.to_device('gpu'))

    assert all(equal(asarray(a, device='cpu'), a))
    assert_raises(ValueError, lambda: asarray(a, device='gpu'))

def test_array_properties():
    a = ones((1, 2, 3))
    b = ones((2, 3))
    assert_raises(ValueError, lambda: a.T)

    assert isinstance(b.T, Array)
    assert b.T.shape == (3, 2)

    assert isinstance(a.mT, Array)
    assert a.mT.shape == (1, 3, 2)
    assert isinstance(b.mT, Array)
    assert b.mT.shape == (3, 2)

def test___array__():
    a = ones((2, 3), dtype=int16)
    assert np.asarray(a) is a._array
    b = np.asarray(a, dtype=np.float64)
    assert np.all(np.equal(b, np.ones((2, 3), dtype=np.float64)))
    assert b.dtype == np.float64

def test_allow_newaxis():
    a = ones(5)
    indexed_a = a[None, :]
    assert indexed_a.shape == (1, 5)

def test_disallow_flat_indexing_with_newaxis():
    a = ones((3, 3, 3))
    with pytest.raises(IndexError):
        a[None, 0, 0]

def test_disallow_mask_with_newaxis():
    a = ones((3, 3, 3))
    with pytest.raises(IndexError):
        a[None, asarray(True)]

@pytest.mark.parametrize("shape", [(), (5,), (3, 3, 3)])
@pytest.mark.parametrize("index", ["string", False, True])
def test_error_on_invalid_index(shape, index):
    a = ones(shape)
    with pytest.raises(IndexError):
        a[index]

def test_mask_0d_array_without_errors():
    a = ones(())
    a[asarray(True)]

@pytest.mark.parametrize(
    "i", [slice(5), slice(5, 0), asarray(True), asarray([0, 1])]
)
def test_error_on_invalid_index_with_ellipsis(i):
    a = ones((3, 3, 3))
    with pytest.raises(IndexError):
        a[..., i]
    with pytest.raises(IndexError):
        a[i, ...]

def test_array_keys_use_private_array():
    """
    Indexing operations convert array keys before indexing the internal array

    Fails when array_api array keys are not converted into NumPy-proper arrays
    in __getitem__(). This is achieved by passing array_api arrays with 0-sized
    dimensions, which NumPy-proper treats erroneously - not sure why!

    TODO: Find and use appropriate __setitem__() case.
    """
    a = ones((0, 0), dtype=bool_)
    assert a[a].shape == (0,)

    a = ones((0,), dtype=bool_)
    key = ones((0, 0), dtype=bool_)
    with pytest.raises(IndexError):
        a[key]