PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/core/tests/
Upload File :
Current File : //opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/core/tests/test_umath_complex.py
import sys
import platform
import pytest

import numpy as np
# import the c-extension module directly since _arg is not exported via umath
import numpy.core._multiarray_umath as ncu
from numpy.testing import (
    assert_raises, assert_equal, assert_array_equal, assert_almost_equal, assert_array_max_ulp
    )

# TODO: branch cuts (use Pauli code)
# TODO: conj 'symmetry'
# TODO: FPU exceptions

# At least on Windows the results of many complex functions are not conforming
# to the C99 standard. See ticket 1574.
# Ditto for Solaris (ticket 1642) and OS X on PowerPC.
#FIXME: this will probably change when we require full C99 campatibility
with np.errstate(all='ignore'):
    functions_seem_flaky = ((np.exp(complex(np.inf, 0)).imag != 0)
                            or (np.log(complex(np.NZERO, 0)).imag != np.pi))
# TODO: replace with a check on whether platform-provided C99 funcs are used
xfail_complex_tests = (not sys.platform.startswith('linux') or functions_seem_flaky)

# TODO This can be xfail when the generator functions are got rid of.
platform_skip = pytest.mark.skipif(xfail_complex_tests,
                                   reason="Inadequate C99 complex support")



class TestCexp:
    def test_simple(self):
        check = check_complex_value
        f = np.exp

        check(f, 1, 0, np.exp(1), 0, False)
        check(f, 0, 1, np.cos(1), np.sin(1), False)

        ref = np.exp(1) * complex(np.cos(1), np.sin(1))
        check(f, 1, 1, ref.real, ref.imag, False)

    @platform_skip
    def test_special_values(self):
        # C99: Section G 6.3.1

        check = check_complex_value
        f = np.exp

        # cexp(+-0 + 0i) is 1 + 0i
        check(f, np.PZERO, 0, 1, 0, False)
        check(f, np.NZERO, 0, 1, 0, False)

        # cexp(x + infi) is nan + nani for finite x and raises 'invalid' FPU
        # exception
        check(f,  1, np.inf, np.nan, np.nan)
        check(f, -1, np.inf, np.nan, np.nan)
        check(f,  0, np.inf, np.nan, np.nan)

        # cexp(inf + 0i) is inf + 0i
        check(f,  np.inf, 0, np.inf, 0)

        # cexp(-inf + yi) is +0 * (cos(y) + i sin(y)) for finite y
        check(f,  -np.inf, 1, np.PZERO, np.PZERO)
        check(f,  -np.inf, 0.75 * np.pi, np.NZERO, np.PZERO)

        # cexp(inf + yi) is +inf * (cos(y) + i sin(y)) for finite y
        check(f,  np.inf, 1, np.inf, np.inf)
        check(f,  np.inf, 0.75 * np.pi, -np.inf, np.inf)

        # cexp(-inf + inf i) is +-0 +- 0i (signs unspecified)
        def _check_ninf_inf(dummy):
            msgform = "cexp(-inf, inf) is (%f, %f), expected (+-0, +-0)"
            with np.errstate(invalid='ignore'):
                z = f(np.array(complex(-np.inf, np.inf)))
                if z.real != 0 or z.imag != 0:
                    raise AssertionError(msgform % (z.real, z.imag))

        _check_ninf_inf(None)

        # cexp(inf + inf i) is +-inf + NaNi and raised invalid FPU ex.
        def _check_inf_inf(dummy):
            msgform = "cexp(inf, inf) is (%f, %f), expected (+-inf, nan)"
            with np.errstate(invalid='ignore'):
                z = f(np.array(complex(np.inf, np.inf)))
                if not np.isinf(z.real) or not np.isnan(z.imag):
                    raise AssertionError(msgform % (z.real, z.imag))

        _check_inf_inf(None)

        # cexp(-inf + nan i) is +-0 +- 0i
        def _check_ninf_nan(dummy):
            msgform = "cexp(-inf, nan) is (%f, %f), expected (+-0, +-0)"
            with np.errstate(invalid='ignore'):
                z = f(np.array(complex(-np.inf, np.nan)))
                if z.real != 0 or z.imag != 0:
                    raise AssertionError(msgform % (z.real, z.imag))

        _check_ninf_nan(None)

        # cexp(inf + nan i) is +-inf + nan
        def _check_inf_nan(dummy):
            msgform = "cexp(-inf, nan) is (%f, %f), expected (+-inf, nan)"
            with np.errstate(invalid='ignore'):
                z = f(np.array(complex(np.inf, np.nan)))
                if not np.isinf(z.real) or not np.isnan(z.imag):
                    raise AssertionError(msgform % (z.real, z.imag))

        _check_inf_nan(None)

        # cexp(nan + yi) is nan + nani for y != 0 (optional: raises invalid FPU
        # ex)
        check(f, np.nan, 1, np.nan, np.nan)
        check(f, np.nan, -1, np.nan, np.nan)

        check(f, np.nan,  np.inf, np.nan, np.nan)
        check(f, np.nan, -np.inf, np.nan, np.nan)

        # cexp(nan + nani) is nan + nani
        check(f, np.nan, np.nan, np.nan, np.nan)

    # TODO This can be xfail when the generator functions are got rid of.
    @pytest.mark.skip(reason="cexp(nan + 0I) is wrong on most platforms")
    def test_special_values2(self):
        # XXX: most implementations get it wrong here (including glibc <= 2.10)
        # cexp(nan + 0i) is nan + 0i
        check = check_complex_value
        f = np.exp

        check(f, np.nan, 0, np.nan, 0)

class TestClog:
    def test_simple(self):
        x = np.array([1+0j, 1+2j])
        y_r = np.log(np.abs(x)) + 1j * np.angle(x)
        y = np.log(x)
        assert_almost_equal(y, y_r)

    @platform_skip
    @pytest.mark.skipif(platform.machine() == "armv5tel", reason="See gh-413.")
    def test_special_values(self):
        xl = []
        yl = []

        # From C99 std (Sec 6.3.2)
        # XXX: check exceptions raised
        # --- raise for invalid fails.

        # clog(-0 + i0) returns -inf + i pi and raises the 'divide-by-zero'
        # floating-point exception.
        with np.errstate(divide='raise'):
            x = np.array([np.NZERO], dtype=complex)
            y = complex(-np.inf, np.pi)
            assert_raises(FloatingPointError, np.log, x)
        with np.errstate(divide='ignore'):
            assert_almost_equal(np.log(x), y)

        xl.append(x)
        yl.append(y)

        # clog(+0 + i0) returns -inf + i0 and raises the 'divide-by-zero'
        # floating-point exception.
        with np.errstate(divide='raise'):
            x = np.array([0], dtype=complex)
            y = complex(-np.inf, 0)
            assert_raises(FloatingPointError, np.log, x)
        with np.errstate(divide='ignore'):
            assert_almost_equal(np.log(x), y)

        xl.append(x)
        yl.append(y)

        # clog(x + i inf returns +inf + i pi /2, for finite x.
        x = np.array([complex(1, np.inf)], dtype=complex)
        y = complex(np.inf, 0.5 * np.pi)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        x = np.array([complex(-1, np.inf)], dtype=complex)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(x + iNaN) returns NaN + iNaN and optionally raises the
        # 'invalid' floating- point exception, for finite x.
        with np.errstate(invalid='raise'):
            x = np.array([complex(1., np.nan)], dtype=complex)
            y = complex(np.nan, np.nan)
            #assert_raises(FloatingPointError, np.log, x)
        with np.errstate(invalid='ignore'):
            assert_almost_equal(np.log(x), y)

        xl.append(x)
        yl.append(y)

        with np.errstate(invalid='raise'):
            x = np.array([np.inf + 1j * np.nan], dtype=complex)
            #assert_raises(FloatingPointError, np.log, x)
        with np.errstate(invalid='ignore'):
            assert_almost_equal(np.log(x), y)

        xl.append(x)
        yl.append(y)

        # clog(- inf + iy) returns +inf + ipi , for finite positive-signed y.
        x = np.array([-np.inf + 1j], dtype=complex)
        y = complex(np.inf, np.pi)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(+ inf + iy) returns +inf + i0, for finite positive-signed y.
        x = np.array([np.inf + 1j], dtype=complex)
        y = complex(np.inf, 0)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(- inf + i inf) returns +inf + i3pi /4.
        x = np.array([complex(-np.inf, np.inf)], dtype=complex)
        y = complex(np.inf, 0.75 * np.pi)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(+ inf + i inf) returns +inf + ipi /4.
        x = np.array([complex(np.inf, np.inf)], dtype=complex)
        y = complex(np.inf, 0.25 * np.pi)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(+/- inf + iNaN) returns +inf + iNaN.
        x = np.array([complex(np.inf, np.nan)], dtype=complex)
        y = complex(np.inf, np.nan)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        x = np.array([complex(-np.inf, np.nan)], dtype=complex)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(NaN + iy) returns NaN + iNaN and optionally raises the
        # 'invalid' floating-point exception, for finite y.
        x = np.array([complex(np.nan, 1)], dtype=complex)
        y = complex(np.nan, np.nan)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(NaN + i inf) returns +inf + iNaN.
        x = np.array([complex(np.nan, np.inf)], dtype=complex)
        y = complex(np.inf, np.nan)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(NaN + iNaN) returns NaN + iNaN.
        x = np.array([complex(np.nan, np.nan)], dtype=complex)
        y = complex(np.nan, np.nan)
        assert_almost_equal(np.log(x), y)
        xl.append(x)
        yl.append(y)

        # clog(conj(z)) = conj(clog(z)).
        xa = np.array(xl, dtype=complex)
        ya = np.array(yl, dtype=complex)
        with np.errstate(divide='ignore'):
            for i in range(len(xa)):
                assert_almost_equal(np.log(xa[i].conj()), ya[i].conj())


class TestCsqrt:

    def test_simple(self):
        # sqrt(1)
        check_complex_value(np.sqrt, 1, 0, 1, 0)

        # sqrt(1i)
        rres = 0.5*np.sqrt(2)
        ires = rres
        check_complex_value(np.sqrt, 0, 1, rres, ires, False)

        # sqrt(-1)
        check_complex_value(np.sqrt, -1, 0, 0, 1)

    def test_simple_conjugate(self):
        ref = np.conj(np.sqrt(complex(1, 1)))

        def f(z):
            return np.sqrt(np.conj(z))

        check_complex_value(f, 1, 1, ref.real, ref.imag, False)

    #def test_branch_cut(self):
    #    _check_branch_cut(f, -1, 0, 1, -1)

    @platform_skip
    def test_special_values(self):
        # C99: Sec G 6.4.2

        check = check_complex_value
        f = np.sqrt

        # csqrt(+-0 + 0i) is 0 + 0i
        check(f, np.PZERO, 0, 0, 0)
        check(f, np.NZERO, 0, 0, 0)

        # csqrt(x + infi) is inf + infi for any x (including NaN)
        check(f,  1, np.inf, np.inf, np.inf)
        check(f, -1, np.inf, np.inf, np.inf)

        check(f, np.PZERO, np.inf, np.inf, np.inf)
        check(f, np.NZERO, np.inf, np.inf, np.inf)
        check(f,   np.inf, np.inf, np.inf, np.inf)
        check(f,  -np.inf, np.inf, np.inf, np.inf)
        check(f,  -np.nan, np.inf, np.inf, np.inf)

        # csqrt(x + nani) is nan + nani for any finite x
        check(f,  1, np.nan, np.nan, np.nan)
        check(f, -1, np.nan, np.nan, np.nan)
        check(f,  0, np.nan, np.nan, np.nan)

        # csqrt(-inf + yi) is +0 + infi for any finite y > 0
        check(f, -np.inf, 1, np.PZERO, np.inf)

        # csqrt(inf + yi) is +inf + 0i for any finite y > 0
        check(f, np.inf, 1, np.inf, np.PZERO)

        # csqrt(-inf + nani) is nan +- infi (both +i infi are valid)
        def _check_ninf_nan(dummy):
            msgform = "csqrt(-inf, nan) is (%f, %f), expected (nan, +-inf)"
            z = np.sqrt(np.array(complex(-np.inf, np.nan)))
            #Fixme: ugly workaround for isinf bug.
            with np.errstate(invalid='ignore'):
                if not (np.isnan(z.real) and np.isinf(z.imag)):
                    raise AssertionError(msgform % (z.real, z.imag))

        _check_ninf_nan(None)

        # csqrt(+inf + nani) is inf + nani
        check(f, np.inf, np.nan, np.inf, np.nan)

        # csqrt(nan + yi) is nan + nani for any finite y (infinite handled in x
        # + nani)
        check(f, np.nan,       0, np.nan, np.nan)
        check(f, np.nan,       1, np.nan, np.nan)
        check(f, np.nan,  np.nan, np.nan, np.nan)

        # XXX: check for conj(csqrt(z)) == csqrt(conj(z)) (need to fix branch
        # cuts first)

class TestCpow:
    def setup_method(self):
        self.olderr = np.seterr(invalid='ignore')

    def teardown_method(self):
        np.seterr(**self.olderr)

    def test_simple(self):
        x = np.array([1+1j, 0+2j, 1+2j, np.inf, np.nan])
        y_r = x ** 2
        y = np.power(x, 2)
        assert_almost_equal(y, y_r)

    def test_scalar(self):
        x = np.array([1, 1j,         2,  2.5+.37j, np.inf, np.nan])
        y = np.array([1, 1j, -0.5+1.5j, -0.5+1.5j,      2,      3])
        lx = list(range(len(x)))

        # Hardcode the expected `builtins.complex` values,
        # as complex exponentiation is broken as of bpo-44698
        p_r = [
            1+0j,
            0.20787957635076193+0j,
            0.35812203996480685+0.6097119028618724j,
            0.12659112128185032+0.48847676699581527j,
            complex(np.inf, np.nan),
            complex(np.nan, np.nan),
        ]

        n_r = [x[i] ** y[i] for i in lx]
        for i in lx:
            assert_almost_equal(n_r[i], p_r[i], err_msg='Loop %d\n' % i)

    def test_array(self):
        x = np.array([1, 1j,         2,  2.5+.37j, np.inf, np.nan])
        y = np.array([1, 1j, -0.5+1.5j, -0.5+1.5j,      2,      3])
        lx = list(range(len(x)))

        # Hardcode the expected `builtins.complex` values,
        # as complex exponentiation is broken as of bpo-44698
        p_r = [
            1+0j,
            0.20787957635076193+0j,
            0.35812203996480685+0.6097119028618724j,
            0.12659112128185032+0.48847676699581527j,
            complex(np.inf, np.nan),
            complex(np.nan, np.nan),
        ]

        n_r = x ** y
        for i in lx:
            assert_almost_equal(n_r[i], p_r[i], err_msg='Loop %d\n' % i)

class TestCabs:
    def setup_method(self):
        self.olderr = np.seterr(invalid='ignore')

    def teardown_method(self):
        np.seterr(**self.olderr)

    def test_simple(self):
        x = np.array([1+1j, 0+2j, 1+2j, np.inf, np.nan])
        y_r = np.array([np.sqrt(2.), 2, np.sqrt(5), np.inf, np.nan])
        y = np.abs(x)
        assert_almost_equal(y, y_r)

    def test_fabs(self):
        # Test that np.abs(x +- 0j) == np.abs(x) (as mandated by C99 for cabs)
        x = np.array([1+0j], dtype=complex)
        assert_array_equal(np.abs(x), np.real(x))

        x = np.array([complex(1, np.NZERO)], dtype=complex)
        assert_array_equal(np.abs(x), np.real(x))

        x = np.array([complex(np.inf, np.NZERO)], dtype=complex)
        assert_array_equal(np.abs(x), np.real(x))

        x = np.array([complex(np.nan, np.NZERO)], dtype=complex)
        assert_array_equal(np.abs(x), np.real(x))

    def test_cabs_inf_nan(self):
        x, y = [], []

        # cabs(+-nan + nani) returns nan
        x.append(np.nan)
        y.append(np.nan)
        check_real_value(np.abs,  np.nan, np.nan, np.nan)

        x.append(np.nan)
        y.append(-np.nan)
        check_real_value(np.abs, -np.nan, np.nan, np.nan)

        # According to C99 standard, if exactly one of the real/part is inf and
        # the other nan, then cabs should return inf
        x.append(np.inf)
        y.append(np.nan)
        check_real_value(np.abs,  np.inf, np.nan, np.inf)

        x.append(-np.inf)
        y.append(np.nan)
        check_real_value(np.abs, -np.inf, np.nan, np.inf)

        # cabs(conj(z)) == conj(cabs(z)) (= cabs(z))
        def f(a):
            return np.abs(np.conj(a))

        def g(a, b):
            return np.abs(complex(a, b))

        xa = np.array(x, dtype=complex)
        assert len(xa) == len(x) == len(y)
        for xi, yi in zip(x, y):
            ref = g(xi, yi)
            check_real_value(f, xi, yi, ref)

class TestCarg:
    def test_simple(self):
        check_real_value(ncu._arg, 1, 0, 0, False)
        check_real_value(ncu._arg, 0, 1, 0.5*np.pi, False)

        check_real_value(ncu._arg, 1, 1, 0.25*np.pi, False)
        check_real_value(ncu._arg, np.PZERO, np.PZERO, np.PZERO)

    # TODO This can be xfail when the generator functions are got rid of.
    @pytest.mark.skip(
        reason="Complex arithmetic with signed zero fails on most platforms")
    def test_zero(self):
        # carg(-0 +- 0i) returns +- pi
        check_real_value(ncu._arg, np.NZERO, np.PZERO,  np.pi, False)
        check_real_value(ncu._arg, np.NZERO, np.NZERO, -np.pi, False)

        # carg(+0 +- 0i) returns +- 0
        check_real_value(ncu._arg, np.PZERO, np.PZERO, np.PZERO)
        check_real_value(ncu._arg, np.PZERO, np.NZERO, np.NZERO)

        # carg(x +- 0i) returns +- 0 for x > 0
        check_real_value(ncu._arg, 1, np.PZERO, np.PZERO, False)
        check_real_value(ncu._arg, 1, np.NZERO, np.NZERO, False)

        # carg(x +- 0i) returns +- pi for x < 0
        check_real_value(ncu._arg, -1, np.PZERO,  np.pi, False)
        check_real_value(ncu._arg, -1, np.NZERO, -np.pi, False)

        # carg(+- 0 + yi) returns pi/2 for y > 0
        check_real_value(ncu._arg, np.PZERO, 1, 0.5 * np.pi, False)
        check_real_value(ncu._arg, np.NZERO, 1, 0.5 * np.pi, False)

        # carg(+- 0 + yi) returns -pi/2 for y < 0
        check_real_value(ncu._arg, np.PZERO, -1, 0.5 * np.pi, False)
        check_real_value(ncu._arg, np.NZERO, -1, -0.5 * np.pi, False)

    #def test_branch_cuts(self):
    #    _check_branch_cut(ncu._arg, -1, 1j, -1, 1)

    def test_special_values(self):
        # carg(-np.inf +- yi) returns +-pi for finite y > 0
        check_real_value(ncu._arg, -np.inf,  1,  np.pi, False)
        check_real_value(ncu._arg, -np.inf, -1, -np.pi, False)

        # carg(np.inf +- yi) returns +-0 for finite y > 0
        check_real_value(ncu._arg, np.inf,  1, np.PZERO, False)
        check_real_value(ncu._arg, np.inf, -1, np.NZERO, False)

        # carg(x +- np.infi) returns +-pi/2 for finite x
        check_real_value(ncu._arg, 1,  np.inf,  0.5 * np.pi, False)
        check_real_value(ncu._arg, 1, -np.inf, -0.5 * np.pi, False)

        # carg(-np.inf +- np.infi) returns +-3pi/4
        check_real_value(ncu._arg, -np.inf,  np.inf,  0.75 * np.pi, False)
        check_real_value(ncu._arg, -np.inf, -np.inf, -0.75 * np.pi, False)

        # carg(np.inf +- np.infi) returns +-pi/4
        check_real_value(ncu._arg, np.inf,  np.inf,  0.25 * np.pi, False)
        check_real_value(ncu._arg, np.inf, -np.inf, -0.25 * np.pi, False)

        # carg(x + yi) returns np.nan if x or y is nan
        check_real_value(ncu._arg, np.nan,      0, np.nan, False)
        check_real_value(ncu._arg,      0, np.nan, np.nan, False)

        check_real_value(ncu._arg, np.nan, np.inf, np.nan, False)
        check_real_value(ncu._arg, np.inf, np.nan, np.nan, False)


def check_real_value(f, x1, y1, x, exact=True):
    z1 = np.array([complex(x1, y1)])
    if exact:
        assert_equal(f(z1), x)
    else:
        assert_almost_equal(f(z1), x)


def check_complex_value(f, x1, y1, x2, y2, exact=True):
    z1 = np.array([complex(x1, y1)])
    z2 = complex(x2, y2)
    with np.errstate(invalid='ignore'):
        if exact:
            assert_equal(f(z1), z2)
        else:
            assert_almost_equal(f(z1), z2)

class TestSpecialComplexAVX:
    @pytest.mark.parametrize("stride", [-4,-2,-1,1,2,4])
    @pytest.mark.parametrize("astype", [np.complex64, np.complex128])
    def test_array(self, stride, astype):
        arr = np.array([complex(np.nan , np.nan),
                        complex(np.nan , np.inf),
                        complex(np.inf , np.nan),
                        complex(np.inf , np.inf),
                        complex(0.     , np.inf),
                        complex(np.inf , 0.),
                        complex(0.     , 0.),
                        complex(0.     , np.nan),
                        complex(np.nan , 0.)], dtype=astype)
        abs_true = np.array([np.nan, np.inf, np.inf, np.inf, np.inf, np.inf, 0., np.nan, np.nan], dtype=arr.real.dtype)
        sq_true = np.array([complex(np.nan,  np.nan),
                            complex(np.nan,  np.nan),
                            complex(np.nan,  np.nan),
                            complex(np.nan,  np.inf),
                            complex(-np.inf, np.nan),
                            complex(np.inf,  np.nan),
                            complex(0.,     0.),
                            complex(np.nan, np.nan),
                            complex(np.nan, np.nan)], dtype=astype)
        assert_equal(np.abs(arr[::stride]), abs_true[::stride])
        with np.errstate(invalid='ignore'):
            assert_equal(np.square(arr[::stride]), sq_true[::stride])

class TestComplexAbsoluteAVX:
    @pytest.mark.parametrize("arraysize", [1,2,3,4,5,6,7,8,9,10,11,13,15,17,18,19])
    @pytest.mark.parametrize("stride", [-4,-3,-2,-1,1,2,3,4])
    @pytest.mark.parametrize("astype", [np.complex64, np.complex128])
    # test to ensure masking and strides work as intended in the AVX implementation
    def test_array(self, arraysize, stride, astype):
        arr = np.ones(arraysize, dtype=astype)
        abs_true = np.ones(arraysize, dtype=arr.real.dtype)
        assert_equal(np.abs(arr[::stride]), abs_true[::stride])

# Testcase taken as is from https://github.com/numpy/numpy/issues/16660
class TestComplexAbsoluteMixedDTypes:
    @pytest.mark.parametrize("stride", [-4,-3,-2,-1,1,2,3,4])
    @pytest.mark.parametrize("astype", [np.complex64, np.complex128])
    @pytest.mark.parametrize("func", ['abs', 'square', 'conjugate'])

    def test_array(self, stride, astype, func):
        dtype = [('template_id', '<i8'), ('bank_chisq','<f4'),
                 ('bank_chisq_dof','<i8'), ('chisq', '<f4'), ('chisq_dof','<i8'),
                 ('cont_chisq', '<f4'), ('psd_var_val', '<f4'), ('sg_chisq','<f4'),
                 ('mycomplex', astype), ('time_index', '<i8')]
        vec = np.array([
               (0, 0., 0, -31.666483, 200, 0., 0.,  1.      ,  3.0+4.0j   ,  613090),
               (1, 0., 0, 260.91525 ,  42, 0., 0.,  1.      ,  5.0+12.0j  ,  787315),
               (1, 0., 0,  52.15155 ,  42, 0., 0.,  1.      ,  8.0+15.0j  ,  806641),
               (1, 0., 0,  52.430195,  42, 0., 0.,  1.      ,  7.0+24.0j  , 1363540),
               (2, 0., 0, 304.43646 ,  58, 0., 0.,  1.      ,  20.0+21.0j ,  787323),
               (3, 0., 0, 299.42108 ,  52, 0., 0.,  1.      ,  12.0+35.0j ,  787332),
               (4, 0., 0,  39.4836  ,  28, 0., 0.,  9.182192,  9.0+40.0j  ,  787304),
               (4, 0., 0,  76.83787 ,  28, 0., 0.,  1.      ,  28.0+45.0j, 1321869),
               (5, 0., 0, 143.26366 ,  24, 0., 0., 10.996129,  11.0+60.0j ,  787299)], dtype=dtype)
        myfunc = getattr(np, func)
        a = vec['mycomplex']
        g = myfunc(a[::stride])

        b = vec['mycomplex'].copy()
        h = myfunc(b[::stride])

        assert_array_max_ulp(h.real, g.real, 1)
        assert_array_max_ulp(h.imag, g.imag, 1)