PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib/tests/
Upload File :
Current File : //opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib/tests/test_shape_base.py
import numpy as np
import functools
import sys
import pytest

from numpy.lib.shape_base import (
    apply_along_axis, apply_over_axes, array_split, split, hsplit, dsplit,
    vsplit, dstack, column_stack, kron, tile, expand_dims, take_along_axis,
    put_along_axis
    )
from numpy.testing import (
    assert_, assert_equal, assert_array_equal, assert_raises, assert_warns
    )


IS_64BIT = sys.maxsize > 2**32


def _add_keepdims(func):
    """ hack in keepdims behavior into a function taking an axis """
    @functools.wraps(func)
    def wrapped(a, axis, **kwargs):
        res = func(a, axis=axis, **kwargs)
        if axis is None:
            axis = 0  # res is now a scalar, so we can insert this anywhere
        return np.expand_dims(res, axis=axis)
    return wrapped


class TestTakeAlongAxis:
    def test_argequivalent(self):
        """ Test it translates from arg<func> to <func> """
        from numpy.random import rand
        a = rand(3, 4, 5)

        funcs = [
            (np.sort, np.argsort, dict()),
            (_add_keepdims(np.min), _add_keepdims(np.argmin), dict()),
            (_add_keepdims(np.max), _add_keepdims(np.argmax), dict()),
            (np.partition, np.argpartition, dict(kth=2)),
        ]

        for func, argfunc, kwargs in funcs:
            for axis in list(range(a.ndim)) + [None]:
                a_func = func(a, axis=axis, **kwargs)
                ai_func = argfunc(a, axis=axis, **kwargs)
                assert_equal(a_func, take_along_axis(a, ai_func, axis=axis))

    def test_invalid(self):
        """ Test it errors when indices has too few dimensions """
        a = np.ones((10, 10))
        ai = np.ones((10, 2), dtype=np.intp)

        # sanity check
        take_along_axis(a, ai, axis=1)

        # not enough indices
        assert_raises(ValueError, take_along_axis, a, np.array(1), axis=1)
        # bool arrays not allowed
        assert_raises(IndexError, take_along_axis, a, ai.astype(bool), axis=1)
        # float arrays not allowed
        assert_raises(IndexError, take_along_axis, a, ai.astype(float), axis=1)
        # invalid axis
        assert_raises(np.AxisError, take_along_axis, a, ai, axis=10)

    def test_empty(self):
        """ Test everything is ok with empty results, even with inserted dims """
        a  = np.ones((3, 4, 5))
        ai = np.ones((3, 0, 5), dtype=np.intp)

        actual = take_along_axis(a, ai, axis=1)
        assert_equal(actual.shape, ai.shape)

    def test_broadcast(self):
        """ Test that non-indexing dimensions are broadcast in both directions """
        a  = np.ones((3, 4, 1))
        ai = np.ones((1, 2, 5), dtype=np.intp)
        actual = take_along_axis(a, ai, axis=1)
        assert_equal(actual.shape, (3, 2, 5))


class TestPutAlongAxis:
    def test_replace_max(self):
        a_base = np.array([[10, 30, 20], [60, 40, 50]])

        for axis in list(range(a_base.ndim)) + [None]:
            # we mutate this in the loop
            a = a_base.copy()

            # replace the max with a small value
            i_max = _add_keepdims(np.argmax)(a, axis=axis)
            put_along_axis(a, i_max, -99, axis=axis)

            # find the new minimum, which should max
            i_min = _add_keepdims(np.argmin)(a, axis=axis)

            assert_equal(i_min, i_max)

    def test_broadcast(self):
        """ Test that non-indexing dimensions are broadcast in both directions """
        a  = np.ones((3, 4, 1))
        ai = np.arange(10, dtype=np.intp).reshape((1, 2, 5)) % 4
        put_along_axis(a, ai, 20, axis=1)
        assert_equal(take_along_axis(a, ai, axis=1), 20)


class TestApplyAlongAxis:
    def test_simple(self):
        a = np.ones((20, 10), 'd')
        assert_array_equal(
            apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1]))

    def test_simple101(self):
        a = np.ones((10, 101), 'd')
        assert_array_equal(
            apply_along_axis(len, 0, a), len(a)*np.ones(a.shape[1]))

    def test_3d(self):
        a = np.arange(27).reshape((3, 3, 3))
        assert_array_equal(apply_along_axis(np.sum, 0, a),
                           [[27, 30, 33], [36, 39, 42], [45, 48, 51]])

    def test_preserve_subclass(self):
        def double(row):
            return row * 2

        class MyNDArray(np.ndarray):
            pass

        m = np.array([[0, 1], [2, 3]]).view(MyNDArray)
        expected = np.array([[0, 2], [4, 6]]).view(MyNDArray)

        result = apply_along_axis(double, 0, m)
        assert_(isinstance(result, MyNDArray))
        assert_array_equal(result, expected)

        result = apply_along_axis(double, 1, m)
        assert_(isinstance(result, MyNDArray))
        assert_array_equal(result, expected)

    def test_subclass(self):
        class MinimalSubclass(np.ndarray):
            data = 1

        def minimal_function(array):
            return array.data

        a = np.zeros((6, 3)).view(MinimalSubclass)

        assert_array_equal(
            apply_along_axis(minimal_function, 0, a), np.array([1, 1, 1])
        )

    def test_scalar_array(self, cls=np.ndarray):
        a = np.ones((6, 3)).view(cls)
        res = apply_along_axis(np.sum, 0, a)
        assert_(isinstance(res, cls))
        assert_array_equal(res, np.array([6, 6, 6]).view(cls))

    def test_0d_array(self, cls=np.ndarray):
        def sum_to_0d(x):
            """ Sum x, returning a 0d array of the same class """
            assert_equal(x.ndim, 1)
            return np.squeeze(np.sum(x, keepdims=True))
        a = np.ones((6, 3)).view(cls)
        res = apply_along_axis(sum_to_0d, 0, a)
        assert_(isinstance(res, cls))
        assert_array_equal(res, np.array([6, 6, 6]).view(cls))

        res = apply_along_axis(sum_to_0d, 1, a)
        assert_(isinstance(res, cls))
        assert_array_equal(res, np.array([3, 3, 3, 3, 3, 3]).view(cls))

    def test_axis_insertion(self, cls=np.ndarray):
        def f1to2(x):
            """produces an asymmetric non-square matrix from x"""
            assert_equal(x.ndim, 1)
            return (x[::-1] * x[1:,None]).view(cls)

        a2d = np.arange(6*3).reshape((6, 3))

        # 2d insertion along first axis
        actual = apply_along_axis(f1to2, 0, a2d)
        expected = np.stack([
            f1to2(a2d[:,i]) for i in range(a2d.shape[1])
        ], axis=-1).view(cls)
        assert_equal(type(actual), type(expected))
        assert_equal(actual, expected)

        # 2d insertion along last axis
        actual = apply_along_axis(f1to2, 1, a2d)
        expected = np.stack([
            f1to2(a2d[i,:]) for i in range(a2d.shape[0])
        ], axis=0).view(cls)
        assert_equal(type(actual), type(expected))
        assert_equal(actual, expected)

        # 3d insertion along middle axis
        a3d = np.arange(6*5*3).reshape((6, 5, 3))

        actual = apply_along_axis(f1to2, 1, a3d)
        expected = np.stack([
            np.stack([
                f1to2(a3d[i,:,j]) for i in range(a3d.shape[0])
            ], axis=0)
            for j in range(a3d.shape[2])
        ], axis=-1).view(cls)
        assert_equal(type(actual), type(expected))
        assert_equal(actual, expected)

    def test_subclass_preservation(self):
        class MinimalSubclass(np.ndarray):
            pass
        self.test_scalar_array(MinimalSubclass)
        self.test_0d_array(MinimalSubclass)
        self.test_axis_insertion(MinimalSubclass)

    def test_axis_insertion_ma(self):
        def f1to2(x):
            """produces an asymmetric non-square matrix from x"""
            assert_equal(x.ndim, 1)
            res = x[::-1] * x[1:,None]
            return np.ma.masked_where(res%5==0, res)
        a = np.arange(6*3).reshape((6, 3))
        res = apply_along_axis(f1to2, 0, a)
        assert_(isinstance(res, np.ma.masked_array))
        assert_equal(res.ndim, 3)
        assert_array_equal(res[:,:,0].mask, f1to2(a[:,0]).mask)
        assert_array_equal(res[:,:,1].mask, f1to2(a[:,1]).mask)
        assert_array_equal(res[:,:,2].mask, f1to2(a[:,2]).mask)

    def test_tuple_func1d(self):
        def sample_1d(x):
            return x[1], x[0]
        res = np.apply_along_axis(sample_1d, 1, np.array([[1, 2], [3, 4]]))
        assert_array_equal(res, np.array([[2, 1], [4, 3]]))

    def test_empty(self):
        # can't apply_along_axis when there's no chance to call the function
        def never_call(x):
            assert_(False) # should never be reached

        a = np.empty((0, 0))
        assert_raises(ValueError, np.apply_along_axis, never_call, 0, a)
        assert_raises(ValueError, np.apply_along_axis, never_call, 1, a)

        # but it's sometimes ok with some non-zero dimensions
        def empty_to_1(x):
            assert_(len(x) == 0)
            return 1

        a = np.empty((10, 0))
        actual = np.apply_along_axis(empty_to_1, 1, a)
        assert_equal(actual, np.ones(10))
        assert_raises(ValueError, np.apply_along_axis, empty_to_1, 0, a)

    def test_with_iterable_object(self):
        # from issue 5248
        d = np.array([
            [{1, 11}, {2, 22}, {3, 33}],
            [{4, 44}, {5, 55}, {6, 66}]
        ])
        actual = np.apply_along_axis(lambda a: set.union(*a), 0, d)
        expected = np.array([{1, 11, 4, 44}, {2, 22, 5, 55}, {3, 33, 6, 66}])

        assert_equal(actual, expected)

        # issue 8642 - assert_equal doesn't detect this!
        for i in np.ndindex(actual.shape):
            assert_equal(type(actual[i]), type(expected[i]))


class TestApplyOverAxes:
    def test_simple(self):
        a = np.arange(24).reshape(2, 3, 4)
        aoa_a = apply_over_axes(np.sum, a, [0, 2])
        assert_array_equal(aoa_a, np.array([[[60], [92], [124]]]))


class TestExpandDims:
    def test_functionality(self):
        s = (2, 3, 4, 5)
        a = np.empty(s)
        for axis in range(-5, 4):
            b = expand_dims(a, axis)
            assert_(b.shape[axis] == 1)
            assert_(np.squeeze(b).shape == s)

    def test_axis_tuple(self):
        a = np.empty((3, 3, 3))
        assert np.expand_dims(a, axis=(0, 1, 2)).shape == (1, 1, 1, 3, 3, 3)
        assert np.expand_dims(a, axis=(0, -1, -2)).shape == (1, 3, 3, 3, 1, 1)
        assert np.expand_dims(a, axis=(0, 3, 5)).shape == (1, 3, 3, 1, 3, 1)
        assert np.expand_dims(a, axis=(0, -3, -5)).shape == (1, 1, 3, 1, 3, 3)

    def test_axis_out_of_range(self):
        s = (2, 3, 4, 5)
        a = np.empty(s)
        assert_raises(np.AxisError, expand_dims, a, -6)
        assert_raises(np.AxisError, expand_dims, a, 5)

        a = np.empty((3, 3, 3))
        assert_raises(np.AxisError, expand_dims, a, (0, -6))
        assert_raises(np.AxisError, expand_dims, a, (0, 5))

    def test_repeated_axis(self):
        a = np.empty((3, 3, 3))
        assert_raises(ValueError, expand_dims, a, axis=(1, 1))

    def test_subclasses(self):
        a = np.arange(10).reshape((2, 5))
        a = np.ma.array(a, mask=a%3 == 0)

        expanded = np.expand_dims(a, axis=1)
        assert_(isinstance(expanded, np.ma.MaskedArray))
        assert_equal(expanded.shape, (2, 1, 5))
        assert_equal(expanded.mask.shape, (2, 1, 5))


class TestArraySplit:
    def test_integer_0_split(self):
        a = np.arange(10)
        assert_raises(ValueError, array_split, a, 0)

    def test_integer_split(self):
        a = np.arange(10)
        res = array_split(a, 1)
        desired = [np.arange(10)]
        compare_results(res, desired)

        res = array_split(a, 2)
        desired = [np.arange(5), np.arange(5, 10)]
        compare_results(res, desired)

        res = array_split(a, 3)
        desired = [np.arange(4), np.arange(4, 7), np.arange(7, 10)]
        compare_results(res, desired)

        res = array_split(a, 4)
        desired = [np.arange(3), np.arange(3, 6), np.arange(6, 8),
                   np.arange(8, 10)]
        compare_results(res, desired)

        res = array_split(a, 5)
        desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6),
                   np.arange(6, 8), np.arange(8, 10)]
        compare_results(res, desired)

        res = array_split(a, 6)
        desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6),
                   np.arange(6, 8), np.arange(8, 9), np.arange(9, 10)]
        compare_results(res, desired)

        res = array_split(a, 7)
        desired = [np.arange(2), np.arange(2, 4), np.arange(4, 6),
                   np.arange(6, 7), np.arange(7, 8), np.arange(8, 9),
                   np.arange(9, 10)]
        compare_results(res, desired)

        res = array_split(a, 8)
        desired = [np.arange(2), np.arange(2, 4), np.arange(4, 5),
                   np.arange(5, 6), np.arange(6, 7), np.arange(7, 8),
                   np.arange(8, 9), np.arange(9, 10)]
        compare_results(res, desired)

        res = array_split(a, 9)
        desired = [np.arange(2), np.arange(2, 3), np.arange(3, 4),
                   np.arange(4, 5), np.arange(5, 6), np.arange(6, 7),
                   np.arange(7, 8), np.arange(8, 9), np.arange(9, 10)]
        compare_results(res, desired)

        res = array_split(a, 10)
        desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3),
                   np.arange(3, 4), np.arange(4, 5), np.arange(5, 6),
                   np.arange(6, 7), np.arange(7, 8), np.arange(8, 9),
                   np.arange(9, 10)]
        compare_results(res, desired)

        res = array_split(a, 11)
        desired = [np.arange(1), np.arange(1, 2), np.arange(2, 3),
                   np.arange(3, 4), np.arange(4, 5), np.arange(5, 6),
                   np.arange(6, 7), np.arange(7, 8), np.arange(8, 9),
                   np.arange(9, 10), np.array([])]
        compare_results(res, desired)

    def test_integer_split_2D_rows(self):
        a = np.array([np.arange(10), np.arange(10)])
        res = array_split(a, 3, axis=0)
        tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]),
                   np.zeros((0, 10))]
        compare_results(res, tgt)
        assert_(a.dtype.type is res[-1].dtype.type)

        # Same thing for manual splits:
        res = array_split(a, [0, 1], axis=0)
        tgt = [np.zeros((0, 10)), np.array([np.arange(10)]),
               np.array([np.arange(10)])]
        compare_results(res, tgt)
        assert_(a.dtype.type is res[-1].dtype.type)

    def test_integer_split_2D_cols(self):
        a = np.array([np.arange(10), np.arange(10)])
        res = array_split(a, 3, axis=-1)
        desired = [np.array([np.arange(4), np.arange(4)]),
                   np.array([np.arange(4, 7), np.arange(4, 7)]),
                   np.array([np.arange(7, 10), np.arange(7, 10)])]
        compare_results(res, desired)

    def test_integer_split_2D_default(self):
        """ This will fail if we change default axis
        """
        a = np.array([np.arange(10), np.arange(10)])
        res = array_split(a, 3)
        tgt = [np.array([np.arange(10)]), np.array([np.arange(10)]),
                   np.zeros((0, 10))]
        compare_results(res, tgt)
        assert_(a.dtype.type is res[-1].dtype.type)
        # perhaps should check higher dimensions

    @pytest.mark.skipif(not IS_64BIT, reason="Needs 64bit platform")
    def test_integer_split_2D_rows_greater_max_int32(self):
        a = np.broadcast_to([0], (1 << 32, 2))
        res = array_split(a, 4)
        chunk = np.broadcast_to([0], (1 << 30, 2))
        tgt = [chunk] * 4
        for i in range(len(tgt)):
            assert_equal(res[i].shape, tgt[i].shape)

    def test_index_split_simple(self):
        a = np.arange(10)
        indices = [1, 5, 7]
        res = array_split(a, indices, axis=-1)
        desired = [np.arange(0, 1), np.arange(1, 5), np.arange(5, 7),
                   np.arange(7, 10)]
        compare_results(res, desired)

    def test_index_split_low_bound(self):
        a = np.arange(10)
        indices = [0, 5, 7]
        res = array_split(a, indices, axis=-1)
        desired = [np.array([]), np.arange(0, 5), np.arange(5, 7),
                   np.arange(7, 10)]
        compare_results(res, desired)

    def test_index_split_high_bound(self):
        a = np.arange(10)
        indices = [0, 5, 7, 10, 12]
        res = array_split(a, indices, axis=-1)
        desired = [np.array([]), np.arange(0, 5), np.arange(5, 7),
                   np.arange(7, 10), np.array([]), np.array([])]
        compare_results(res, desired)


class TestSplit:
    # The split function is essentially the same as array_split,
    # except that it test if splitting will result in an
    # equal split.  Only test for this case.

    def test_equal_split(self):
        a = np.arange(10)
        res = split(a, 2)
        desired = [np.arange(5), np.arange(5, 10)]
        compare_results(res, desired)

    def test_unequal_split(self):
        a = np.arange(10)
        assert_raises(ValueError, split, a, 3)


class TestColumnStack:
    def test_non_iterable(self):
        assert_raises(TypeError, column_stack, 1)

    def test_1D_arrays(self):
        # example from docstring
        a = np.array((1, 2, 3))
        b = np.array((2, 3, 4))
        expected = np.array([[1, 2],
                             [2, 3],
                             [3, 4]])
        actual = np.column_stack((a, b))
        assert_equal(actual, expected)

    def test_2D_arrays(self):
        # same as hstack 2D docstring example
        a = np.array([[1], [2], [3]])
        b = np.array([[2], [3], [4]])
        expected = np.array([[1, 2],
                             [2, 3],
                             [3, 4]])
        actual = np.column_stack((a, b))
        assert_equal(actual, expected)

    def test_generator(self):
        with pytest.raises(TypeError, match="arrays to stack must be"):
            column_stack((np.arange(3) for _ in range(2)))


class TestDstack:
    def test_non_iterable(self):
        assert_raises(TypeError, dstack, 1)

    def test_0D_array(self):
        a = np.array(1)
        b = np.array(2)
        res = dstack([a, b])
        desired = np.array([[[1, 2]]])
        assert_array_equal(res, desired)

    def test_1D_array(self):
        a = np.array([1])
        b = np.array([2])
        res = dstack([a, b])
        desired = np.array([[[1, 2]]])
        assert_array_equal(res, desired)

    def test_2D_array(self):
        a = np.array([[1], [2]])
        b = np.array([[1], [2]])
        res = dstack([a, b])
        desired = np.array([[[1, 1]], [[2, 2, ]]])
        assert_array_equal(res, desired)

    def test_2D_array2(self):
        a = np.array([1, 2])
        b = np.array([1, 2])
        res = dstack([a, b])
        desired = np.array([[[1, 1], [2, 2]]])
        assert_array_equal(res, desired)

    def test_generator(self):
        with pytest.raises(TypeError, match="arrays to stack must be"):
            dstack((np.arange(3) for _ in range(2)))


# array_split has more comprehensive test of splitting.
# only do simple test on hsplit, vsplit, and dsplit
class TestHsplit:
    """Only testing for integer splits.

    """
    def test_non_iterable(self):
        assert_raises(ValueError, hsplit, 1, 1)

    def test_0D_array(self):
        a = np.array(1)
        try:
            hsplit(a, 2)
            assert_(0)
        except ValueError:
            pass

    def test_1D_array(self):
        a = np.array([1, 2, 3, 4])
        res = hsplit(a, 2)
        desired = [np.array([1, 2]), np.array([3, 4])]
        compare_results(res, desired)

    def test_2D_array(self):
        a = np.array([[1, 2, 3, 4],
                  [1, 2, 3, 4]])
        res = hsplit(a, 2)
        desired = [np.array([[1, 2], [1, 2]]), np.array([[3, 4], [3, 4]])]
        compare_results(res, desired)


class TestVsplit:
    """Only testing for integer splits.

    """
    def test_non_iterable(self):
        assert_raises(ValueError, vsplit, 1, 1)

    def test_0D_array(self):
        a = np.array(1)
        assert_raises(ValueError, vsplit, a, 2)

    def test_1D_array(self):
        a = np.array([1, 2, 3, 4])
        try:
            vsplit(a, 2)
            assert_(0)
        except ValueError:
            pass

    def test_2D_array(self):
        a = np.array([[1, 2, 3, 4],
                  [1, 2, 3, 4]])
        res = vsplit(a, 2)
        desired = [np.array([[1, 2, 3, 4]]), np.array([[1, 2, 3, 4]])]
        compare_results(res, desired)


class TestDsplit:
    # Only testing for integer splits.
    def test_non_iterable(self):
        assert_raises(ValueError, dsplit, 1, 1)

    def test_0D_array(self):
        a = np.array(1)
        assert_raises(ValueError, dsplit, a, 2)

    def test_1D_array(self):
        a = np.array([1, 2, 3, 4])
        assert_raises(ValueError, dsplit, a, 2)

    def test_2D_array(self):
        a = np.array([[1, 2, 3, 4],
                  [1, 2, 3, 4]])
        try:
            dsplit(a, 2)
            assert_(0)
        except ValueError:
            pass

    def test_3D_array(self):
        a = np.array([[[1, 2, 3, 4],
                   [1, 2, 3, 4]],
                  [[1, 2, 3, 4],
                   [1, 2, 3, 4]]])
        res = dsplit(a, 2)
        desired = [np.array([[[1, 2], [1, 2]], [[1, 2], [1, 2]]]),
                   np.array([[[3, 4], [3, 4]], [[3, 4], [3, 4]]])]
        compare_results(res, desired)


class TestSqueeze:
    def test_basic(self):
        from numpy.random import rand

        a = rand(20, 10, 10, 1, 1)
        b = rand(20, 1, 10, 1, 20)
        c = rand(1, 1, 20, 10)
        assert_array_equal(np.squeeze(a), np.reshape(a, (20, 10, 10)))
        assert_array_equal(np.squeeze(b), np.reshape(b, (20, 10, 20)))
        assert_array_equal(np.squeeze(c), np.reshape(c, (20, 10)))

        # Squeezing to 0-dim should still give an ndarray
        a = [[[1.5]]]
        res = np.squeeze(a)
        assert_equal(res, 1.5)
        assert_equal(res.ndim, 0)
        assert_equal(type(res), np.ndarray)


class TestKron:
    def test_basic(self):
        # Using 0-dimensional ndarray
        a = np.array(1)
        b = np.array([[1, 2], [3, 4]])
        k = np.array([[1, 2], [3, 4]])
        assert_array_equal(np.kron(a, b), k)
        a = np.array([[1, 2], [3, 4]])
        b = np.array(1)
        assert_array_equal(np.kron(a, b), k)

        # Using 1-dimensional ndarray
        a = np.array([3])
        b = np.array([[1, 2], [3, 4]])
        k = np.array([[3, 6], [9, 12]])
        assert_array_equal(np.kron(a, b), k)
        a = np.array([[1, 2], [3, 4]])
        b = np.array([3])
        assert_array_equal(np.kron(a, b), k)

        # Using 3-dimensional ndarray
        a = np.array([[[1]], [[2]]])
        b = np.array([[1, 2], [3, 4]])
        k = np.array([[[1, 2], [3, 4]], [[2, 4], [6, 8]]])
        assert_array_equal(np.kron(a, b), k)
        a = np.array([[1, 2], [3, 4]])
        b = np.array([[[1]], [[2]]])
        k = np.array([[[1, 2], [3, 4]], [[2, 4], [6, 8]]])
        assert_array_equal(np.kron(a, b), k)

    def test_return_type(self):
        class myarray(np.ndarray):
            __array_priority__ = 1.0

        a = np.ones([2, 2])
        ma = myarray(a.shape, a.dtype, a.data)
        assert_equal(type(kron(a, a)), np.ndarray)
        assert_equal(type(kron(ma, ma)), myarray)
        assert_equal(type(kron(a, ma)), myarray)
        assert_equal(type(kron(ma, a)), myarray)

    @pytest.mark.parametrize(
        "array_class", [np.asarray, np.mat]
    )
    def test_kron_smoke(self, array_class):
        a = array_class(np.ones([3, 3]))
        b = array_class(np.ones([3, 3]))
        k = array_class(np.ones([9, 9]))

        assert_array_equal(np.kron(a, b), k)

    def test_kron_ma(self):
        x = np.ma.array([[1, 2], [3, 4]], mask=[[0, 1], [1, 0]])
        k = np.ma.array(np.diag([1, 4, 4, 16]),
                mask=~np.array(np.identity(4), dtype=bool))

        assert_array_equal(k, np.kron(x, x))

    @pytest.mark.parametrize(
        "shape_a,shape_b", [
            ((1, 1), (1, 1)),
            ((1, 2, 3), (4, 5, 6)),
            ((2, 2), (2, 2, 2)),
            ((1, 0), (1, 1)),
            ((2, 0, 2), (2, 2)),
            ((2, 0, 0, 2), (2, 0, 2)),
        ])
    def test_kron_shape(self, shape_a, shape_b):
        a = np.ones(shape_a)
        b = np.ones(shape_b)
        normalised_shape_a = (1,) * max(0, len(shape_b)-len(shape_a)) + shape_a
        normalised_shape_b = (1,) * max(0, len(shape_a)-len(shape_b)) + shape_b
        expected_shape = np.multiply(normalised_shape_a, normalised_shape_b)

        k = np.kron(a, b)
        assert np.array_equal(
                k.shape, expected_shape), "Unexpected shape from kron"


class TestTile:
    def test_basic(self):
        a = np.array([0, 1, 2])
        b = [[1, 2], [3, 4]]
        assert_equal(tile(a, 2), [0, 1, 2, 0, 1, 2])
        assert_equal(tile(a, (2, 2)), [[0, 1, 2, 0, 1, 2], [0, 1, 2, 0, 1, 2]])
        assert_equal(tile(a, (1, 2)), [[0, 1, 2, 0, 1, 2]])
        assert_equal(tile(b, 2), [[1, 2, 1, 2], [3, 4, 3, 4]])
        assert_equal(tile(b, (2, 1)), [[1, 2], [3, 4], [1, 2], [3, 4]])
        assert_equal(tile(b, (2, 2)), [[1, 2, 1, 2], [3, 4, 3, 4],
                                       [1, 2, 1, 2], [3, 4, 3, 4]])

    def test_tile_one_repetition_on_array_gh4679(self):
        a = np.arange(5)
        b = tile(a, 1)
        b += 2
        assert_equal(a, np.arange(5))

    def test_empty(self):
        a = np.array([[[]]])
        b = np.array([[], []])
        c = tile(b, 2).shape
        d = tile(a, (3, 2, 5)).shape
        assert_equal(c, (2, 0))
        assert_equal(d, (3, 2, 0))

    def test_kroncompare(self):
        from numpy.random import randint

        reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)]
        shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)]
        for s in shape:
            b = randint(0, 10, size=s)
            for r in reps:
                a = np.ones(r, b.dtype)
                large = tile(b, r)
                klarge = kron(a, b)
                assert_equal(large, klarge)


class TestMayShareMemory:
    def test_basic(self):
        d = np.ones((50, 60))
        d2 = np.ones((30, 60, 6))
        assert_(np.may_share_memory(d, d))
        assert_(np.may_share_memory(d, d[::-1]))
        assert_(np.may_share_memory(d, d[::2]))
        assert_(np.may_share_memory(d, d[1:, ::-1]))

        assert_(not np.may_share_memory(d[::-1], d2))
        assert_(not np.may_share_memory(d[::2], d2))
        assert_(not np.may_share_memory(d[1:, ::-1], d2))
        assert_(np.may_share_memory(d2[1:, ::-1], d2))


# Utility
def compare_results(res, desired):
    """Compare lists of arrays."""
    if len(res) != len(desired):
        raise ValueError("Iterables have different lengths")
    # See also PEP 618 for Python 3.10
    for x, y in zip(res, desired):
        assert_array_equal(x, y)