PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/matrixlib/tests/
Upload File :
Current File : //opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/matrixlib/tests/test_defmatrix.py
import collections.abc

import numpy as np
from numpy import matrix, asmatrix, bmat
from numpy.testing import (
    assert_, assert_equal, assert_almost_equal, assert_array_equal,
    assert_array_almost_equal, assert_raises
    )
from numpy.linalg import matrix_power
from numpy.matrixlib import mat

class TestCtor:
    def test_basic(self):
        A = np.array([[1, 2], [3, 4]])
        mA = matrix(A)
        assert_(np.all(mA.A == A))

        B = bmat("A,A;A,A")
        C = bmat([[A, A], [A, A]])
        D = np.array([[1, 2, 1, 2],
                      [3, 4, 3, 4],
                      [1, 2, 1, 2],
                      [3, 4, 3, 4]])
        assert_(np.all(B.A == D))
        assert_(np.all(C.A == D))

        E = np.array([[5, 6], [7, 8]])
        AEresult = matrix([[1, 2, 5, 6], [3, 4, 7, 8]])
        assert_(np.all(bmat([A, E]) == AEresult))

        vec = np.arange(5)
        mvec = matrix(vec)
        assert_(mvec.shape == (1, 5))

    def test_exceptions(self):
        # Check for ValueError when called with invalid string data.
        assert_raises(ValueError, matrix, "invalid")

    def test_bmat_nondefault_str(self):
        A = np.array([[1, 2], [3, 4]])
        B = np.array([[5, 6], [7, 8]])
        Aresult = np.array([[1, 2, 1, 2],
                            [3, 4, 3, 4],
                            [1, 2, 1, 2],
                            [3, 4, 3, 4]])
        mixresult = np.array([[1, 2, 5, 6],
                              [3, 4, 7, 8],
                              [5, 6, 1, 2],
                              [7, 8, 3, 4]])
        assert_(np.all(bmat("A,A;A,A") == Aresult))
        assert_(np.all(bmat("A,A;A,A", ldict={'A':B}) == Aresult))
        assert_raises(TypeError, bmat, "A,A;A,A", gdict={'A':B})
        assert_(
            np.all(bmat("A,A;A,A", ldict={'A':A}, gdict={'A':B}) == Aresult))
        b2 = bmat("A,B;C,D", ldict={'A':A,'B':B}, gdict={'C':B,'D':A})
        assert_(np.all(b2 == mixresult))


class TestProperties:
    def test_sum(self):
        """Test whether matrix.sum(axis=1) preserves orientation.
        Fails in NumPy <= 0.9.6.2127.
        """
        M = matrix([[1, 2, 0, 0],
                   [3, 4, 0, 0],
                   [1, 2, 1, 2],
                   [3, 4, 3, 4]])
        sum0 = matrix([8, 12, 4, 6])
        sum1 = matrix([3, 7, 6, 14]).T
        sumall = 30
        assert_array_equal(sum0, M.sum(axis=0))
        assert_array_equal(sum1, M.sum(axis=1))
        assert_equal(sumall, M.sum())

        assert_array_equal(sum0, np.sum(M, axis=0))
        assert_array_equal(sum1, np.sum(M, axis=1))
        assert_equal(sumall, np.sum(M))

    def test_prod(self):
        x = matrix([[1, 2, 3], [4, 5, 6]])
        assert_equal(x.prod(), 720)
        assert_equal(x.prod(0), matrix([[4, 10, 18]]))
        assert_equal(x.prod(1), matrix([[6], [120]]))

        assert_equal(np.prod(x), 720)
        assert_equal(np.prod(x, axis=0), matrix([[4, 10, 18]]))
        assert_equal(np.prod(x, axis=1), matrix([[6], [120]]))

        y = matrix([0, 1, 3])
        assert_(y.prod() == 0)

    def test_max(self):
        x = matrix([[1, 2, 3], [4, 5, 6]])
        assert_equal(x.max(), 6)
        assert_equal(x.max(0), matrix([[4, 5, 6]]))
        assert_equal(x.max(1), matrix([[3], [6]]))

        assert_equal(np.max(x), 6)
        assert_equal(np.max(x, axis=0), matrix([[4, 5, 6]]))
        assert_equal(np.max(x, axis=1), matrix([[3], [6]]))

    def test_min(self):
        x = matrix([[1, 2, 3], [4, 5, 6]])
        assert_equal(x.min(), 1)
        assert_equal(x.min(0), matrix([[1, 2, 3]]))
        assert_equal(x.min(1), matrix([[1], [4]]))

        assert_equal(np.min(x), 1)
        assert_equal(np.min(x, axis=0), matrix([[1, 2, 3]]))
        assert_equal(np.min(x, axis=1), matrix([[1], [4]]))

    def test_ptp(self):
        x = np.arange(4).reshape((2, 2))
        assert_(x.ptp() == 3)
        assert_(np.all(x.ptp(0) == np.array([2, 2])))
        assert_(np.all(x.ptp(1) == np.array([1, 1])))

    def test_var(self):
        x = np.arange(9).reshape((3, 3))
        mx = x.view(np.matrix)
        assert_equal(x.var(ddof=0), mx.var(ddof=0))
        assert_equal(x.var(ddof=1), mx.var(ddof=1))

    def test_basic(self):
        import numpy.linalg as linalg

        A = np.array([[1., 2.],
                      [3., 4.]])
        mA = matrix(A)
        assert_(np.allclose(linalg.inv(A), mA.I))
        assert_(np.all(np.array(np.transpose(A) == mA.T)))
        assert_(np.all(np.array(np.transpose(A) == mA.H)))
        assert_(np.all(A == mA.A))

        B = A + 2j*A
        mB = matrix(B)
        assert_(np.allclose(linalg.inv(B), mB.I))
        assert_(np.all(np.array(np.transpose(B) == mB.T)))
        assert_(np.all(np.array(np.transpose(B).conj() == mB.H)))

    def test_pinv(self):
        x = matrix(np.arange(6).reshape(2, 3))
        xpinv = matrix([[-0.77777778,  0.27777778],
                        [-0.11111111,  0.11111111],
                        [ 0.55555556, -0.05555556]])
        assert_almost_equal(x.I, xpinv)

    def test_comparisons(self):
        A = np.arange(100).reshape(10, 10)
        mA = matrix(A)
        mB = matrix(A) + 0.1
        assert_(np.all(mB == A+0.1))
        assert_(np.all(mB == matrix(A+0.1)))
        assert_(not np.any(mB == matrix(A-0.1)))
        assert_(np.all(mA < mB))
        assert_(np.all(mA <= mB))
        assert_(np.all(mA <= mA))
        assert_(not np.any(mA < mA))

        assert_(not np.any(mB < mA))
        assert_(np.all(mB >= mA))
        assert_(np.all(mB >= mB))
        assert_(not np.any(mB > mB))

        assert_(np.all(mA == mA))
        assert_(not np.any(mA == mB))
        assert_(np.all(mB != mA))

        assert_(not np.all(abs(mA) > 0))
        assert_(np.all(abs(mB > 0)))

    def test_asmatrix(self):
        A = np.arange(100).reshape(10, 10)
        mA = asmatrix(A)
        A[0, 0] = -10
        assert_(A[0, 0] == mA[0, 0])

    def test_noaxis(self):
        A = matrix([[1, 0], [0, 1]])
        assert_(A.sum() == matrix(2))
        assert_(A.mean() == matrix(0.5))

    def test_repr(self):
        A = matrix([[1, 0], [0, 1]])
        assert_(repr(A) == "matrix([[1, 0],\n        [0, 1]])")

    def test_make_bool_matrix_from_str(self):
        A = matrix('True; True; False')
        B = matrix([[True], [True], [False]])
        assert_array_equal(A, B)

class TestCasting:
    def test_basic(self):
        A = np.arange(100).reshape(10, 10)
        mA = matrix(A)

        mB = mA.copy()
        O = np.ones((10, 10), np.float64) * 0.1
        mB = mB + O
        assert_(mB.dtype.type == np.float64)
        assert_(np.all(mA != mB))
        assert_(np.all(mB == mA+0.1))

        mC = mA.copy()
        O = np.ones((10, 10), np.complex128)
        mC = mC * O
        assert_(mC.dtype.type == np.complex128)
        assert_(np.all(mA != mB))


class TestAlgebra:
    def test_basic(self):
        import numpy.linalg as linalg

        A = np.array([[1., 2.], [3., 4.]])
        mA = matrix(A)

        B = np.identity(2)
        for i in range(6):
            assert_(np.allclose((mA ** i).A, B))
            B = np.dot(B, A)

        Ainv = linalg.inv(A)
        B = np.identity(2)
        for i in range(6):
            assert_(np.allclose((mA ** -i).A, B))
            B = np.dot(B, Ainv)

        assert_(np.allclose((mA * mA).A, np.dot(A, A)))
        assert_(np.allclose((mA + mA).A, (A + A)))
        assert_(np.allclose((3*mA).A, (3*A)))

        mA2 = matrix(A)
        mA2 *= 3
        assert_(np.allclose(mA2.A, 3*A))

    def test_pow(self):
        """Test raising a matrix to an integer power works as expected."""
        m = matrix("1. 2.; 3. 4.")
        m2 = m.copy()
        m2 **= 2
        mi = m.copy()
        mi **= -1
        m4 = m2.copy()
        m4 **= 2
        assert_array_almost_equal(m2, m**2)
        assert_array_almost_equal(m4, np.dot(m2, m2))
        assert_array_almost_equal(np.dot(mi, m), np.eye(2))

    def test_scalar_type_pow(self):
        m = matrix([[1, 2], [3, 4]])
        for scalar_t in [np.int8, np.uint8]:
            two = scalar_t(2)
            assert_array_almost_equal(m ** 2, m ** two)

    def test_notimplemented(self):
        '''Check that 'not implemented' operations produce a failure.'''
        A = matrix([[1., 2.],
                    [3., 4.]])

        # __rpow__
        with assert_raises(TypeError):
            1.0**A

        # __mul__ with something not a list, ndarray, tuple, or scalar
        with assert_raises(TypeError):
            A*object()


class TestMatrixReturn:
    def test_instance_methods(self):
        a = matrix([1.0], dtype='f8')
        methodargs = {
            'astype': ('intc',),
            'clip': (0.0, 1.0),
            'compress': ([1],),
            'repeat': (1,),
            'reshape': (1,),
            'swapaxes': (0, 0),
            'dot': np.array([1.0]),
            }
        excluded_methods = [
            'argmin', 'choose', 'dump', 'dumps', 'fill', 'getfield',
            'getA', 'getA1', 'item', 'nonzero', 'put', 'putmask', 'resize',
            'searchsorted', 'setflags', 'setfield', 'sort',
            'partition', 'argpartition',
            'take', 'tofile', 'tolist', 'tostring', 'tobytes', 'all', 'any',
            'sum', 'argmax', 'argmin', 'min', 'max', 'mean', 'var', 'ptp',
            'prod', 'std', 'ctypes', 'itemset',
            ]
        for attrib in dir(a):
            if attrib.startswith('_') or attrib in excluded_methods:
                continue
            f = getattr(a, attrib)
            if isinstance(f, collections.abc.Callable):
                # reset contents of a
                a.astype('f8')
                a.fill(1.0)
                if attrib in methodargs:
                    args = methodargs[attrib]
                else:
                    args = ()
                b = f(*args)
                assert_(type(b) is matrix, "%s" % attrib)
        assert_(type(a.real) is matrix)
        assert_(type(a.imag) is matrix)
        c, d = matrix([0.0]).nonzero()
        assert_(type(c) is np.ndarray)
        assert_(type(d) is np.ndarray)


class TestIndexing:
    def test_basic(self):
        x = asmatrix(np.zeros((3, 2), float))
        y = np.zeros((3, 1), float)
        y[:, 0] = [0.8, 0.2, 0.3]
        x[:, 1] = y > 0.5
        assert_equal(x, [[0, 1], [0, 0], [0, 0]])


class TestNewScalarIndexing:
    a = matrix([[1, 2], [3, 4]])

    def test_dimesions(self):
        a = self.a
        x = a[0]
        assert_equal(x.ndim, 2)

    def test_array_from_matrix_list(self):
        a = self.a
        x = np.array([a, a])
        assert_equal(x.shape, [2, 2, 2])

    def test_array_to_list(self):
        a = self.a
        assert_equal(a.tolist(), [[1, 2], [3, 4]])

    def test_fancy_indexing(self):
        a = self.a
        x = a[1, [0, 1, 0]]
        assert_(isinstance(x, matrix))
        assert_equal(x, matrix([[3,  4,  3]]))
        x = a[[1, 0]]
        assert_(isinstance(x, matrix))
        assert_equal(x, matrix([[3,  4], [1, 2]]))
        x = a[[[1], [0]], [[1, 0], [0, 1]]]
        assert_(isinstance(x, matrix))
        assert_equal(x, matrix([[4,  3], [1,  2]]))

    def test_matrix_element(self):
        x = matrix([[1, 2, 3], [4, 5, 6]])
        assert_equal(x[0][0], matrix([[1, 2, 3]]))
        assert_equal(x[0][0].shape, (1, 3))
        assert_equal(x[0].shape, (1, 3))
        assert_equal(x[:, 0].shape, (2, 1))

        x = matrix(0)
        assert_equal(x[0, 0], 0)
        assert_equal(x[0], 0)
        assert_equal(x[:, 0].shape, x.shape)

    def test_scalar_indexing(self):
        x = asmatrix(np.zeros((3, 2), float))
        assert_equal(x[0, 0], x[0][0])

    def test_row_column_indexing(self):
        x = asmatrix(np.eye(2))
        assert_array_equal(x[0,:], [[1, 0]])
        assert_array_equal(x[1,:], [[0, 1]])
        assert_array_equal(x[:, 0], [[1], [0]])
        assert_array_equal(x[:, 1], [[0], [1]])

    def test_boolean_indexing(self):
        A = np.arange(6)
        A.shape = (3, 2)
        x = asmatrix(A)
        assert_array_equal(x[:, np.array([True, False])], x[:, 0])
        assert_array_equal(x[np.array([True, False, False]),:], x[0,:])

    def test_list_indexing(self):
        A = np.arange(6)
        A.shape = (3, 2)
        x = asmatrix(A)
        assert_array_equal(x[:, [1, 0]], x[:, ::-1])
        assert_array_equal(x[[2, 1, 0],:], x[::-1,:])


class TestPower:
    def test_returntype(self):
        a = np.array([[0, 1], [0, 0]])
        assert_(type(matrix_power(a, 2)) is np.ndarray)
        a = mat(a)
        assert_(type(matrix_power(a, 2)) is matrix)

    def test_list(self):
        assert_array_equal(matrix_power([[0, 1], [0, 0]], 2), [[0, 0], [0, 0]])


class TestShape:

    a = np.array([[1], [2]])
    m = matrix([[1], [2]])

    def test_shape(self):
        assert_equal(self.a.shape, (2, 1))
        assert_equal(self.m.shape, (2, 1))

    def test_numpy_ravel(self):
        assert_equal(np.ravel(self.a).shape, (2,))
        assert_equal(np.ravel(self.m).shape, (2,))

    def test_member_ravel(self):
        assert_equal(self.a.ravel().shape, (2,))
        assert_equal(self.m.ravel().shape, (1, 2))

    def test_member_flatten(self):
        assert_equal(self.a.flatten().shape, (2,))
        assert_equal(self.m.flatten().shape, (1, 2))

    def test_numpy_ravel_order(self):
        x = np.array([[1, 2, 3], [4, 5, 6]])
        assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6])
        assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6])
        assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6])
        assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6])
        x = matrix([[1, 2, 3], [4, 5, 6]])
        assert_equal(np.ravel(x), [1, 2, 3, 4, 5, 6])
        assert_equal(np.ravel(x, order='F'), [1, 4, 2, 5, 3, 6])
        assert_equal(np.ravel(x.T), [1, 4, 2, 5, 3, 6])
        assert_equal(np.ravel(x.T, order='A'), [1, 2, 3, 4, 5, 6])

    def test_matrix_ravel_order(self):
        x = matrix([[1, 2, 3], [4, 5, 6]])
        assert_equal(x.ravel(), [[1, 2, 3, 4, 5, 6]])
        assert_equal(x.ravel(order='F'), [[1, 4, 2, 5, 3, 6]])
        assert_equal(x.T.ravel(), [[1, 4, 2, 5, 3, 6]])
        assert_equal(x.T.ravel(order='A'), [[1, 2, 3, 4, 5, 6]])

    def test_array_memory_sharing(self):
        assert_(np.may_share_memory(self.a, self.a.ravel()))
        assert_(not np.may_share_memory(self.a, self.a.flatten()))

    def test_matrix_memory_sharing(self):
        assert_(np.may_share_memory(self.m, self.m.ravel()))
        assert_(not np.may_share_memory(self.m, self.m.flatten()))

    def test_expand_dims_matrix(self):
        # matrices are always 2d - so expand_dims only makes sense when the
        # type is changed away from matrix.
        a = np.arange(10).reshape((2, 5)).view(np.matrix)
        expanded = np.expand_dims(a, axis=1)
        assert_equal(expanded.ndim, 3)
        assert_(not isinstance(expanded, np.matrix))