PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/polynomial/tests/
Upload File :
Current File : //opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/polynomial/tests/test_classes.py
"""Test inter-conversion of different polynomial classes.

This tests the convert and cast methods of all the polynomial classes.

"""
import operator as op
from numbers import Number

import pytest
import numpy as np
from numpy.polynomial import (
    Polynomial, Legendre, Chebyshev, Laguerre, Hermite, HermiteE)
from numpy.testing import (
    assert_almost_equal, assert_raises, assert_equal, assert_,
    )
from numpy.polynomial.polyutils import RankWarning

#
# fixtures
#

classes = (
    Polynomial, Legendre, Chebyshev, Laguerre,
    Hermite, HermiteE
    )
classids = tuple(cls.__name__ for cls in classes)

@pytest.fixture(params=classes, ids=classids)
def Poly(request):
    return request.param

#
# helper functions
#
random = np.random.random


def assert_poly_almost_equal(p1, p2, msg=""):
    try:
        assert_(np.all(p1.domain == p2.domain))
        assert_(np.all(p1.window == p2.window))
        assert_almost_equal(p1.coef, p2.coef)
    except AssertionError:
        msg = f"Result: {p1}\nTarget: {p2}"
        raise AssertionError(msg)


#
# Test conversion methods that depend on combinations of two classes.
#

Poly1 = Poly
Poly2 = Poly


def test_conversion(Poly1, Poly2):
    x = np.linspace(0, 1, 10)
    coef = random((3,))

    d1 = Poly1.domain + random((2,))*.25
    w1 = Poly1.window + random((2,))*.25
    p1 = Poly1(coef, domain=d1, window=w1)

    d2 = Poly2.domain + random((2,))*.25
    w2 = Poly2.window + random((2,))*.25
    p2 = p1.convert(kind=Poly2, domain=d2, window=w2)

    assert_almost_equal(p2.domain, d2)
    assert_almost_equal(p2.window, w2)
    assert_almost_equal(p2(x), p1(x))


def test_cast(Poly1, Poly2):
    x = np.linspace(0, 1, 10)
    coef = random((3,))

    d1 = Poly1.domain + random((2,))*.25
    w1 = Poly1.window + random((2,))*.25
    p1 = Poly1(coef, domain=d1, window=w1)

    d2 = Poly2.domain + random((2,))*.25
    w2 = Poly2.window + random((2,))*.25
    p2 = Poly2.cast(p1, domain=d2, window=w2)

    assert_almost_equal(p2.domain, d2)
    assert_almost_equal(p2.window, w2)
    assert_almost_equal(p2(x), p1(x))


#
# test methods that depend on one class
#


def test_identity(Poly):
    d = Poly.domain + random((2,))*.25
    w = Poly.window + random((2,))*.25
    x = np.linspace(d[0], d[1], 11)
    p = Poly.identity(domain=d, window=w)
    assert_equal(p.domain, d)
    assert_equal(p.window, w)
    assert_almost_equal(p(x), x)


def test_basis(Poly):
    d = Poly.domain + random((2,))*.25
    w = Poly.window + random((2,))*.25
    p = Poly.basis(5, domain=d, window=w)
    assert_equal(p.domain, d)
    assert_equal(p.window, w)
    assert_equal(p.coef, [0]*5 + [1])


def test_fromroots(Poly):
    # check that requested roots are zeros of a polynomial
    # of correct degree, domain, and window.
    d = Poly.domain + random((2,))*.25
    w = Poly.window + random((2,))*.25
    r = random((5,))
    p1 = Poly.fromroots(r, domain=d, window=w)
    assert_equal(p1.degree(), len(r))
    assert_equal(p1.domain, d)
    assert_equal(p1.window, w)
    assert_almost_equal(p1(r), 0)

    # check that polynomial is monic
    pdom = Polynomial.domain
    pwin = Polynomial.window
    p2 = Polynomial.cast(p1, domain=pdom, window=pwin)
    assert_almost_equal(p2.coef[-1], 1)


def test_bad_conditioned_fit(Poly):

    x = [0., 0., 1.]
    y = [1., 2., 3.]

    # check RankWarning is raised
    with pytest.warns(RankWarning) as record:
        Poly.fit(x, y, 2)
    assert record[0].message.args[0] == "The fit may be poorly conditioned"


def test_fit(Poly):

    def f(x):
        return x*(x - 1)*(x - 2)
    x = np.linspace(0, 3)
    y = f(x)

    # check default value of domain and window
    p = Poly.fit(x, y, 3)
    assert_almost_equal(p.domain, [0, 3])
    assert_almost_equal(p(x), y)
    assert_equal(p.degree(), 3)

    # check with given domains and window
    d = Poly.domain + random((2,))*.25
    w = Poly.window + random((2,))*.25
    p = Poly.fit(x, y, 3, domain=d, window=w)
    assert_almost_equal(p(x), y)
    assert_almost_equal(p.domain, d)
    assert_almost_equal(p.window, w)
    p = Poly.fit(x, y, [0, 1, 2, 3], domain=d, window=w)
    assert_almost_equal(p(x), y)
    assert_almost_equal(p.domain, d)
    assert_almost_equal(p.window, w)

    # check with class domain default
    p = Poly.fit(x, y, 3, [])
    assert_equal(p.domain, Poly.domain)
    assert_equal(p.window, Poly.window)
    p = Poly.fit(x, y, [0, 1, 2, 3], [])
    assert_equal(p.domain, Poly.domain)
    assert_equal(p.window, Poly.window)

    # check that fit accepts weights.
    w = np.zeros_like(x)
    z = y + random(y.shape)*.25
    w[::2] = 1
    p1 = Poly.fit(x[::2], z[::2], 3)
    p2 = Poly.fit(x, z, 3, w=w)
    p3 = Poly.fit(x, z, [0, 1, 2, 3], w=w)
    assert_almost_equal(p1(x), p2(x))
    assert_almost_equal(p2(x), p3(x))


def test_equal(Poly):
    p1 = Poly([1, 2, 3], domain=[0, 1], window=[2, 3])
    p2 = Poly([1, 1, 1], domain=[0, 1], window=[2, 3])
    p3 = Poly([1, 2, 3], domain=[1, 2], window=[2, 3])
    p4 = Poly([1, 2, 3], domain=[0, 1], window=[1, 2])
    assert_(p1 == p1)
    assert_(not p1 == p2)
    assert_(not p1 == p3)
    assert_(not p1 == p4)


def test_not_equal(Poly):
    p1 = Poly([1, 2, 3], domain=[0, 1], window=[2, 3])
    p2 = Poly([1, 1, 1], domain=[0, 1], window=[2, 3])
    p3 = Poly([1, 2, 3], domain=[1, 2], window=[2, 3])
    p4 = Poly([1, 2, 3], domain=[0, 1], window=[1, 2])
    assert_(not p1 != p1)
    assert_(p1 != p2)
    assert_(p1 != p3)
    assert_(p1 != p4)


def test_add(Poly):
    # This checks commutation, not numerical correctness
    c1 = list(random((4,)) + .5)
    c2 = list(random((3,)) + .5)
    p1 = Poly(c1)
    p2 = Poly(c2)
    p3 = p1 + p2
    assert_poly_almost_equal(p2 + p1, p3)
    assert_poly_almost_equal(p1 + c2, p3)
    assert_poly_almost_equal(c2 + p1, p3)
    assert_poly_almost_equal(p1 + tuple(c2), p3)
    assert_poly_almost_equal(tuple(c2) + p1, p3)
    assert_poly_almost_equal(p1 + np.array(c2), p3)
    assert_poly_almost_equal(np.array(c2) + p1, p3)
    assert_raises(TypeError, op.add, p1, Poly([0], domain=Poly.domain + 1))
    assert_raises(TypeError, op.add, p1, Poly([0], window=Poly.window + 1))
    if Poly is Polynomial:
        assert_raises(TypeError, op.add, p1, Chebyshev([0]))
    else:
        assert_raises(TypeError, op.add, p1, Polynomial([0]))


def test_sub(Poly):
    # This checks commutation, not numerical correctness
    c1 = list(random((4,)) + .5)
    c2 = list(random((3,)) + .5)
    p1 = Poly(c1)
    p2 = Poly(c2)
    p3 = p1 - p2
    assert_poly_almost_equal(p2 - p1, -p3)
    assert_poly_almost_equal(p1 - c2, p3)
    assert_poly_almost_equal(c2 - p1, -p3)
    assert_poly_almost_equal(p1 - tuple(c2), p3)
    assert_poly_almost_equal(tuple(c2) - p1, -p3)
    assert_poly_almost_equal(p1 - np.array(c2), p3)
    assert_poly_almost_equal(np.array(c2) - p1, -p3)
    assert_raises(TypeError, op.sub, p1, Poly([0], domain=Poly.domain + 1))
    assert_raises(TypeError, op.sub, p1, Poly([0], window=Poly.window + 1))
    if Poly is Polynomial:
        assert_raises(TypeError, op.sub, p1, Chebyshev([0]))
    else:
        assert_raises(TypeError, op.sub, p1, Polynomial([0]))


def test_mul(Poly):
    c1 = list(random((4,)) + .5)
    c2 = list(random((3,)) + .5)
    p1 = Poly(c1)
    p2 = Poly(c2)
    p3 = p1 * p2
    assert_poly_almost_equal(p2 * p1, p3)
    assert_poly_almost_equal(p1 * c2, p3)
    assert_poly_almost_equal(c2 * p1, p3)
    assert_poly_almost_equal(p1 * tuple(c2), p3)
    assert_poly_almost_equal(tuple(c2) * p1, p3)
    assert_poly_almost_equal(p1 * np.array(c2), p3)
    assert_poly_almost_equal(np.array(c2) * p1, p3)
    assert_poly_almost_equal(p1 * 2, p1 * Poly([2]))
    assert_poly_almost_equal(2 * p1, p1 * Poly([2]))
    assert_raises(TypeError, op.mul, p1, Poly([0], domain=Poly.domain + 1))
    assert_raises(TypeError, op.mul, p1, Poly([0], window=Poly.window + 1))
    if Poly is Polynomial:
        assert_raises(TypeError, op.mul, p1, Chebyshev([0]))
    else:
        assert_raises(TypeError, op.mul, p1, Polynomial([0]))


def test_floordiv(Poly):
    c1 = list(random((4,)) + .5)
    c2 = list(random((3,)) + .5)
    c3 = list(random((2,)) + .5)
    p1 = Poly(c1)
    p2 = Poly(c2)
    p3 = Poly(c3)
    p4 = p1 * p2 + p3
    c4 = list(p4.coef)
    assert_poly_almost_equal(p4 // p2, p1)
    assert_poly_almost_equal(p4 // c2, p1)
    assert_poly_almost_equal(c4 // p2, p1)
    assert_poly_almost_equal(p4 // tuple(c2), p1)
    assert_poly_almost_equal(tuple(c4) // p2, p1)
    assert_poly_almost_equal(p4 // np.array(c2), p1)
    assert_poly_almost_equal(np.array(c4) // p2, p1)
    assert_poly_almost_equal(2 // p2, Poly([0]))
    assert_poly_almost_equal(p2 // 2, 0.5*p2)
    assert_raises(
        TypeError, op.floordiv, p1, Poly([0], domain=Poly.domain + 1))
    assert_raises(
        TypeError, op.floordiv, p1, Poly([0], window=Poly.window + 1))
    if Poly is Polynomial:
        assert_raises(TypeError, op.floordiv, p1, Chebyshev([0]))
    else:
        assert_raises(TypeError, op.floordiv, p1, Polynomial([0]))


def test_truediv(Poly):
    # true division is valid only if the denominator is a Number and
    # not a python bool.
    p1 = Poly([1,2,3])
    p2 = p1 * 5

    for stype in np.ScalarType:
        if not issubclass(stype, Number) or issubclass(stype, bool):
            continue
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in (int, float):
        s = stype(5)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for stype in [complex]:
        s = stype(5, 0)
        assert_poly_almost_equal(op.truediv(p2, s), p1)
        assert_raises(TypeError, op.truediv, s, p2)
    for s in [tuple(), list(), dict(), bool(), np.array([1])]:
        assert_raises(TypeError, op.truediv, p2, s)
        assert_raises(TypeError, op.truediv, s, p2)
    for ptype in classes:
        assert_raises(TypeError, op.truediv, p2, ptype(1))


def test_mod(Poly):
    # This checks commutation, not numerical correctness
    c1 = list(random((4,)) + .5)
    c2 = list(random((3,)) + .5)
    c3 = list(random((2,)) + .5)
    p1 = Poly(c1)
    p2 = Poly(c2)
    p3 = Poly(c3)
    p4 = p1 * p2 + p3
    c4 = list(p4.coef)
    assert_poly_almost_equal(p4 % p2, p3)
    assert_poly_almost_equal(p4 % c2, p3)
    assert_poly_almost_equal(c4 % p2, p3)
    assert_poly_almost_equal(p4 % tuple(c2), p3)
    assert_poly_almost_equal(tuple(c4) % p2, p3)
    assert_poly_almost_equal(p4 % np.array(c2), p3)
    assert_poly_almost_equal(np.array(c4) % p2, p3)
    assert_poly_almost_equal(2 % p2, Poly([2]))
    assert_poly_almost_equal(p2 % 2, Poly([0]))
    assert_raises(TypeError, op.mod, p1, Poly([0], domain=Poly.domain + 1))
    assert_raises(TypeError, op.mod, p1, Poly([0], window=Poly.window + 1))
    if Poly is Polynomial:
        assert_raises(TypeError, op.mod, p1, Chebyshev([0]))
    else:
        assert_raises(TypeError, op.mod, p1, Polynomial([0]))


def test_divmod(Poly):
    # This checks commutation, not numerical correctness
    c1 = list(random((4,)) + .5)
    c2 = list(random((3,)) + .5)
    c3 = list(random((2,)) + .5)
    p1 = Poly(c1)
    p2 = Poly(c2)
    p3 = Poly(c3)
    p4 = p1 * p2 + p3
    c4 = list(p4.coef)
    quo, rem = divmod(p4, p2)
    assert_poly_almost_equal(quo, p1)
    assert_poly_almost_equal(rem, p3)
    quo, rem = divmod(p4, c2)
    assert_poly_almost_equal(quo, p1)
    assert_poly_almost_equal(rem, p3)
    quo, rem = divmod(c4, p2)
    assert_poly_almost_equal(quo, p1)
    assert_poly_almost_equal(rem, p3)
    quo, rem = divmod(p4, tuple(c2))
    assert_poly_almost_equal(quo, p1)
    assert_poly_almost_equal(rem, p3)
    quo, rem = divmod(tuple(c4), p2)
    assert_poly_almost_equal(quo, p1)
    assert_poly_almost_equal(rem, p3)
    quo, rem = divmod(p4, np.array(c2))
    assert_poly_almost_equal(quo, p1)
    assert_poly_almost_equal(rem, p3)
    quo, rem = divmod(np.array(c4), p2)
    assert_poly_almost_equal(quo, p1)
    assert_poly_almost_equal(rem, p3)
    quo, rem = divmod(p2, 2)
    assert_poly_almost_equal(quo, 0.5*p2)
    assert_poly_almost_equal(rem, Poly([0]))
    quo, rem = divmod(2, p2)
    assert_poly_almost_equal(quo, Poly([0]))
    assert_poly_almost_equal(rem, Poly([2]))
    assert_raises(TypeError, divmod, p1, Poly([0], domain=Poly.domain + 1))
    assert_raises(TypeError, divmod, p1, Poly([0], window=Poly.window + 1))
    if Poly is Polynomial:
        assert_raises(TypeError, divmod, p1, Chebyshev([0]))
    else:
        assert_raises(TypeError, divmod, p1, Polynomial([0]))


def test_roots(Poly):
    d = Poly.domain * 1.25 + .25
    w = Poly.window
    tgt = np.linspace(d[0], d[1], 5)
    res = np.sort(Poly.fromroots(tgt, domain=d, window=w).roots())
    assert_almost_equal(res, tgt)
    # default domain and window
    res = np.sort(Poly.fromroots(tgt).roots())
    assert_almost_equal(res, tgt)


def test_degree(Poly):
    p = Poly.basis(5)
    assert_equal(p.degree(), 5)


def test_copy(Poly):
    p1 = Poly.basis(5)
    p2 = p1.copy()
    assert_(p1 == p2)
    assert_(p1 is not p2)
    assert_(p1.coef is not p2.coef)
    assert_(p1.domain is not p2.domain)
    assert_(p1.window is not p2.window)


def test_integ(Poly):
    P = Polynomial
    # Check defaults
    p0 = Poly.cast(P([1*2, 2*3, 3*4]))
    p1 = P.cast(p0.integ())
    p2 = P.cast(p0.integ(2))
    assert_poly_almost_equal(p1, P([0, 2, 3, 4]))
    assert_poly_almost_equal(p2, P([0, 0, 1, 1, 1]))
    # Check with k
    p0 = Poly.cast(P([1*2, 2*3, 3*4]))
    p1 = P.cast(p0.integ(k=1))
    p2 = P.cast(p0.integ(2, k=[1, 1]))
    assert_poly_almost_equal(p1, P([1, 2, 3, 4]))
    assert_poly_almost_equal(p2, P([1, 1, 1, 1, 1]))
    # Check with lbnd
    p0 = Poly.cast(P([1*2, 2*3, 3*4]))
    p1 = P.cast(p0.integ(lbnd=1))
    p2 = P.cast(p0.integ(2, lbnd=1))
    assert_poly_almost_equal(p1, P([-9, 2, 3, 4]))
    assert_poly_almost_equal(p2, P([6, -9, 1, 1, 1]))
    # Check scaling
    d = 2*Poly.domain
    p0 = Poly.cast(P([1*2, 2*3, 3*4]), domain=d)
    p1 = P.cast(p0.integ())
    p2 = P.cast(p0.integ(2))
    assert_poly_almost_equal(p1, P([0, 2, 3, 4]))
    assert_poly_almost_equal(p2, P([0, 0, 1, 1, 1]))


def test_deriv(Poly):
    # Check that the derivative is the inverse of integration. It is
    # assumes that the integration has been checked elsewhere.
    d = Poly.domain + random((2,))*.25
    w = Poly.window + random((2,))*.25
    p1 = Poly([1, 2, 3], domain=d, window=w)
    p2 = p1.integ(2, k=[1, 2])
    p3 = p1.integ(1, k=[1])
    assert_almost_equal(p2.deriv(1).coef, p3.coef)
    assert_almost_equal(p2.deriv(2).coef, p1.coef)
    # default domain and window
    p1 = Poly([1, 2, 3])
    p2 = p1.integ(2, k=[1, 2])
    p3 = p1.integ(1, k=[1])
    assert_almost_equal(p2.deriv(1).coef, p3.coef)
    assert_almost_equal(p2.deriv(2).coef, p1.coef)


def test_linspace(Poly):
    d = Poly.domain + random((2,))*.25
    w = Poly.window + random((2,))*.25
    p = Poly([1, 2, 3], domain=d, window=w)
    # check default domain
    xtgt = np.linspace(d[0], d[1], 20)
    ytgt = p(xtgt)
    xres, yres = p.linspace(20)
    assert_almost_equal(xres, xtgt)
    assert_almost_equal(yres, ytgt)
    # check specified domain
    xtgt = np.linspace(0, 2, 20)
    ytgt = p(xtgt)
    xres, yres = p.linspace(20, domain=[0, 2])
    assert_almost_equal(xres, xtgt)
    assert_almost_equal(yres, ytgt)


def test_pow(Poly):
    d = Poly.domain + random((2,))*.25
    w = Poly.window + random((2,))*.25
    tgt = Poly([1], domain=d, window=w)
    tst = Poly([1, 2, 3], domain=d, window=w)
    for i in range(5):
        assert_poly_almost_equal(tst**i, tgt)
        tgt = tgt * tst
    # default domain and window
    tgt = Poly([1])
    tst = Poly([1, 2, 3])
    for i in range(5):
        assert_poly_almost_equal(tst**i, tgt)
        tgt = tgt * tst
    # check error for invalid powers
    assert_raises(ValueError, op.pow, tgt, 1.5)
    assert_raises(ValueError, op.pow, tgt, -1)


def test_call(Poly):
    P = Polynomial
    d = Poly.domain
    x = np.linspace(d[0], d[1], 11)

    # Check defaults
    p = Poly.cast(P([1, 2, 3]))
    tgt = 1 + x*(2 + 3*x)
    res = p(x)
    assert_almost_equal(res, tgt)


def test_cutdeg(Poly):
    p = Poly([1, 2, 3])
    assert_raises(ValueError, p.cutdeg, .5)
    assert_raises(ValueError, p.cutdeg, -1)
    assert_equal(len(p.cutdeg(3)), 3)
    assert_equal(len(p.cutdeg(2)), 3)
    assert_equal(len(p.cutdeg(1)), 2)
    assert_equal(len(p.cutdeg(0)), 1)


def test_truncate(Poly):
    p = Poly([1, 2, 3])
    assert_raises(ValueError, p.truncate, .5)
    assert_raises(ValueError, p.truncate, 0)
    assert_equal(len(p.truncate(4)), 3)
    assert_equal(len(p.truncate(3)), 3)
    assert_equal(len(p.truncate(2)), 2)
    assert_equal(len(p.truncate(1)), 1)


def test_trim(Poly):
    c = [1, 1e-6, 1e-12, 0]
    p = Poly(c)
    assert_equal(p.trim().coef, c[:3])
    assert_equal(p.trim(1e-10).coef, c[:2])
    assert_equal(p.trim(1e-5).coef, c[:1])


def test_mapparms(Poly):
    # check with defaults. Should be identity.
    d = Poly.domain
    w = Poly.window
    p = Poly([1], domain=d, window=w)
    assert_almost_equal([0, 1], p.mapparms())
    #
    w = 2*d + 1
    p = Poly([1], domain=d, window=w)
    assert_almost_equal([1, 2], p.mapparms())


def test_ufunc_override(Poly):
    p = Poly([1, 2, 3])
    x = np.ones(3)
    assert_raises(TypeError, np.add, p, x)
    assert_raises(TypeError, np.add, x, p)


#
# Test class method that only exists for some classes
#


class TestInterpolate:

    def f(self, x):
        return x * (x - 1) * (x - 2)

    def test_raises(self):
        assert_raises(ValueError, Chebyshev.interpolate, self.f, -1)
        assert_raises(TypeError, Chebyshev.interpolate, self.f, 10.)

    def test_dimensions(self):
        for deg in range(1, 5):
            assert_(Chebyshev.interpolate(self.f, deg).degree() == deg)

    def test_approximation(self):

        def powx(x, p):
            return x**p

        x = np.linspace(0, 2, 10)
        for deg in range(0, 10):
            for t in range(0, deg + 1):
                p = Chebyshev.interpolate(powx, deg, domain=[0, 2], args=(t,))
                assert_almost_equal(p(x), powx(x, t), decimal=11)