PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/polynomial/tests/
Upload File :
Current File : //opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/polynomial/tests/test_hermite_e.py
"""Tests for hermite_e module.

"""
from functools import reduce

import numpy as np
import numpy.polynomial.hermite_e as herme
from numpy.polynomial.polynomial import polyval
from numpy.testing import (
    assert_almost_equal, assert_raises, assert_equal, assert_,
    )

He0 = np.array([1])
He1 = np.array([0, 1])
He2 = np.array([-1, 0, 1])
He3 = np.array([0, -3, 0, 1])
He4 = np.array([3, 0, -6, 0, 1])
He5 = np.array([0, 15, 0, -10, 0, 1])
He6 = np.array([-15, 0, 45, 0, -15, 0, 1])
He7 = np.array([0, -105, 0, 105, 0, -21, 0, 1])
He8 = np.array([105, 0, -420, 0, 210, 0, -28, 0, 1])
He9 = np.array([0, 945, 0, -1260, 0, 378, 0, -36, 0, 1])

Helist = [He0, He1, He2, He3, He4, He5, He6, He7, He8, He9]


def trim(x):
    return herme.hermetrim(x, tol=1e-6)


class TestConstants:

    def test_hermedomain(self):
        assert_equal(herme.hermedomain, [-1, 1])

    def test_hermezero(self):
        assert_equal(herme.hermezero, [0])

    def test_hermeone(self):
        assert_equal(herme.hermeone, [1])

    def test_hermex(self):
        assert_equal(herme.hermex, [0, 1])


class TestArithmetic:
    x = np.linspace(-3, 3, 100)

    def test_hermeadd(self):
        for i in range(5):
            for j in range(5):
                msg = f"At i={i}, j={j}"
                tgt = np.zeros(max(i, j) + 1)
                tgt[i] += 1
                tgt[j] += 1
                res = herme.hermeadd([0]*i + [1], [0]*j + [1])
                assert_equal(trim(res), trim(tgt), err_msg=msg)

    def test_hermesub(self):
        for i in range(5):
            for j in range(5):
                msg = f"At i={i}, j={j}"
                tgt = np.zeros(max(i, j) + 1)
                tgt[i] += 1
                tgt[j] -= 1
                res = herme.hermesub([0]*i + [1], [0]*j + [1])
                assert_equal(trim(res), trim(tgt), err_msg=msg)

    def test_hermemulx(self):
        assert_equal(herme.hermemulx([0]), [0])
        assert_equal(herme.hermemulx([1]), [0, 1])
        for i in range(1, 5):
            ser = [0]*i + [1]
            tgt = [0]*(i - 1) + [i, 0, 1]
            assert_equal(herme.hermemulx(ser), tgt)

    def test_hermemul(self):
        # check values of result
        for i in range(5):
            pol1 = [0]*i + [1]
            val1 = herme.hermeval(self.x, pol1)
            for j in range(5):
                msg = f"At i={i}, j={j}"
                pol2 = [0]*j + [1]
                val2 = herme.hermeval(self.x, pol2)
                pol3 = herme.hermemul(pol1, pol2)
                val3 = herme.hermeval(self.x, pol3)
                assert_(len(pol3) == i + j + 1, msg)
                assert_almost_equal(val3, val1*val2, err_msg=msg)

    def test_hermediv(self):
        for i in range(5):
            for j in range(5):
                msg = f"At i={i}, j={j}"
                ci = [0]*i + [1]
                cj = [0]*j + [1]
                tgt = herme.hermeadd(ci, cj)
                quo, rem = herme.hermediv(tgt, ci)
                res = herme.hermeadd(herme.hermemul(quo, ci), rem)
                assert_equal(trim(res), trim(tgt), err_msg=msg)

    def test_hermepow(self):
        for i in range(5):
            for j in range(5):
                msg = f"At i={i}, j={j}"
                c = np.arange(i + 1)
                tgt = reduce(herme.hermemul, [c]*j, np.array([1]))
                res = herme.hermepow(c, j)
                assert_equal(trim(res), trim(tgt), err_msg=msg)


class TestEvaluation:
    # coefficients of 1 + 2*x + 3*x**2
    c1d = np.array([4., 2., 3.])
    c2d = np.einsum('i,j->ij', c1d, c1d)
    c3d = np.einsum('i,j,k->ijk', c1d, c1d, c1d)

    # some random values in [-1, 1)
    x = np.random.random((3, 5))*2 - 1
    y = polyval(x, [1., 2., 3.])

    def test_hermeval(self):
        #check empty input
        assert_equal(herme.hermeval([], [1]).size, 0)

        #check normal input)
        x = np.linspace(-1, 1)
        y = [polyval(x, c) for c in Helist]
        for i in range(10):
            msg = f"At i={i}"
            tgt = y[i]
            res = herme.hermeval(x, [0]*i + [1])
            assert_almost_equal(res, tgt, err_msg=msg)

        #check that shape is preserved
        for i in range(3):
            dims = [2]*i
            x = np.zeros(dims)
            assert_equal(herme.hermeval(x, [1]).shape, dims)
            assert_equal(herme.hermeval(x, [1, 0]).shape, dims)
            assert_equal(herme.hermeval(x, [1, 0, 0]).shape, dims)

    def test_hermeval2d(self):
        x1, x2, x3 = self.x
        y1, y2, y3 = self.y

        #test exceptions
        assert_raises(ValueError, herme.hermeval2d, x1, x2[:2], self.c2d)

        #test values
        tgt = y1*y2
        res = herme.hermeval2d(x1, x2, self.c2d)
        assert_almost_equal(res, tgt)

        #test shape
        z = np.ones((2, 3))
        res = herme.hermeval2d(z, z, self.c2d)
        assert_(res.shape == (2, 3))

    def test_hermeval3d(self):
        x1, x2, x3 = self.x
        y1, y2, y3 = self.y

        #test exceptions
        assert_raises(ValueError, herme.hermeval3d, x1, x2, x3[:2], self.c3d)

        #test values
        tgt = y1*y2*y3
        res = herme.hermeval3d(x1, x2, x3, self.c3d)
        assert_almost_equal(res, tgt)

        #test shape
        z = np.ones((2, 3))
        res = herme.hermeval3d(z, z, z, self.c3d)
        assert_(res.shape == (2, 3))

    def test_hermegrid2d(self):
        x1, x2, x3 = self.x
        y1, y2, y3 = self.y

        #test values
        tgt = np.einsum('i,j->ij', y1, y2)
        res = herme.hermegrid2d(x1, x2, self.c2d)
        assert_almost_equal(res, tgt)

        #test shape
        z = np.ones((2, 3))
        res = herme.hermegrid2d(z, z, self.c2d)
        assert_(res.shape == (2, 3)*2)

    def test_hermegrid3d(self):
        x1, x2, x3 = self.x
        y1, y2, y3 = self.y

        #test values
        tgt = np.einsum('i,j,k->ijk', y1, y2, y3)
        res = herme.hermegrid3d(x1, x2, x3, self.c3d)
        assert_almost_equal(res, tgt)

        #test shape
        z = np.ones((2, 3))
        res = herme.hermegrid3d(z, z, z, self.c3d)
        assert_(res.shape == (2, 3)*3)


class TestIntegral:

    def test_hermeint(self):
        # check exceptions
        assert_raises(TypeError, herme.hermeint, [0], .5)
        assert_raises(ValueError, herme.hermeint, [0], -1)
        assert_raises(ValueError, herme.hermeint, [0], 1, [0, 0])
        assert_raises(ValueError, herme.hermeint, [0], lbnd=[0])
        assert_raises(ValueError, herme.hermeint, [0], scl=[0])
        assert_raises(TypeError, herme.hermeint, [0], axis=.5)

        # test integration of zero polynomial
        for i in range(2, 5):
            k = [0]*(i - 2) + [1]
            res = herme.hermeint([0], m=i, k=k)
            assert_almost_equal(res, [0, 1])

        # check single integration with integration constant
        for i in range(5):
            scl = i + 1
            pol = [0]*i + [1]
            tgt = [i] + [0]*i + [1/scl]
            hermepol = herme.poly2herme(pol)
            hermeint = herme.hermeint(hermepol, m=1, k=[i])
            res = herme.herme2poly(hermeint)
            assert_almost_equal(trim(res), trim(tgt))

        # check single integration with integration constant and lbnd
        for i in range(5):
            scl = i + 1
            pol = [0]*i + [1]
            hermepol = herme.poly2herme(pol)
            hermeint = herme.hermeint(hermepol, m=1, k=[i], lbnd=-1)
            assert_almost_equal(herme.hermeval(-1, hermeint), i)

        # check single integration with integration constant and scaling
        for i in range(5):
            scl = i + 1
            pol = [0]*i + [1]
            tgt = [i] + [0]*i + [2/scl]
            hermepol = herme.poly2herme(pol)
            hermeint = herme.hermeint(hermepol, m=1, k=[i], scl=2)
            res = herme.herme2poly(hermeint)
            assert_almost_equal(trim(res), trim(tgt))

        # check multiple integrations with default k
        for i in range(5):
            for j in range(2, 5):
                pol = [0]*i + [1]
                tgt = pol[:]
                for k in range(j):
                    tgt = herme.hermeint(tgt, m=1)
                res = herme.hermeint(pol, m=j)
                assert_almost_equal(trim(res), trim(tgt))

        # check multiple integrations with defined k
        for i in range(5):
            for j in range(2, 5):
                pol = [0]*i + [1]
                tgt = pol[:]
                for k in range(j):
                    tgt = herme.hermeint(tgt, m=1, k=[k])
                res = herme.hermeint(pol, m=j, k=list(range(j)))
                assert_almost_equal(trim(res), trim(tgt))

        # check multiple integrations with lbnd
        for i in range(5):
            for j in range(2, 5):
                pol = [0]*i + [1]
                tgt = pol[:]
                for k in range(j):
                    tgt = herme.hermeint(tgt, m=1, k=[k], lbnd=-1)
                res = herme.hermeint(pol, m=j, k=list(range(j)), lbnd=-1)
                assert_almost_equal(trim(res), trim(tgt))

        # check multiple integrations with scaling
        for i in range(5):
            for j in range(2, 5):
                pol = [0]*i + [1]
                tgt = pol[:]
                for k in range(j):
                    tgt = herme.hermeint(tgt, m=1, k=[k], scl=2)
                res = herme.hermeint(pol, m=j, k=list(range(j)), scl=2)
                assert_almost_equal(trim(res), trim(tgt))

    def test_hermeint_axis(self):
        # check that axis keyword works
        c2d = np.random.random((3, 4))

        tgt = np.vstack([herme.hermeint(c) for c in c2d.T]).T
        res = herme.hermeint(c2d, axis=0)
        assert_almost_equal(res, tgt)

        tgt = np.vstack([herme.hermeint(c) for c in c2d])
        res = herme.hermeint(c2d, axis=1)
        assert_almost_equal(res, tgt)

        tgt = np.vstack([herme.hermeint(c, k=3) for c in c2d])
        res = herme.hermeint(c2d, k=3, axis=1)
        assert_almost_equal(res, tgt)


class TestDerivative:

    def test_hermeder(self):
        # check exceptions
        assert_raises(TypeError, herme.hermeder, [0], .5)
        assert_raises(ValueError, herme.hermeder, [0], -1)

        # check that zeroth derivative does nothing
        for i in range(5):
            tgt = [0]*i + [1]
            res = herme.hermeder(tgt, m=0)
            assert_equal(trim(res), trim(tgt))

        # check that derivation is the inverse of integration
        for i in range(5):
            for j in range(2, 5):
                tgt = [0]*i + [1]
                res = herme.hermeder(herme.hermeint(tgt, m=j), m=j)
                assert_almost_equal(trim(res), trim(tgt))

        # check derivation with scaling
        for i in range(5):
            for j in range(2, 5):
                tgt = [0]*i + [1]
                res = herme.hermeder(
                    herme.hermeint(tgt, m=j, scl=2), m=j, scl=.5)
                assert_almost_equal(trim(res), trim(tgt))

    def test_hermeder_axis(self):
        # check that axis keyword works
        c2d = np.random.random((3, 4))

        tgt = np.vstack([herme.hermeder(c) for c in c2d.T]).T
        res = herme.hermeder(c2d, axis=0)
        assert_almost_equal(res, tgt)

        tgt = np.vstack([herme.hermeder(c) for c in c2d])
        res = herme.hermeder(c2d, axis=1)
        assert_almost_equal(res, tgt)


class TestVander:
    # some random values in [-1, 1)
    x = np.random.random((3, 5))*2 - 1

    def test_hermevander(self):
        # check for 1d x
        x = np.arange(3)
        v = herme.hermevander(x, 3)
        assert_(v.shape == (3, 4))
        for i in range(4):
            coef = [0]*i + [1]
            assert_almost_equal(v[..., i], herme.hermeval(x, coef))

        # check for 2d x
        x = np.array([[1, 2], [3, 4], [5, 6]])
        v = herme.hermevander(x, 3)
        assert_(v.shape == (3, 2, 4))
        for i in range(4):
            coef = [0]*i + [1]
            assert_almost_equal(v[..., i], herme.hermeval(x, coef))

    def test_hermevander2d(self):
        # also tests hermeval2d for non-square coefficient array
        x1, x2, x3 = self.x
        c = np.random.random((2, 3))
        van = herme.hermevander2d(x1, x2, [1, 2])
        tgt = herme.hermeval2d(x1, x2, c)
        res = np.dot(van, c.flat)
        assert_almost_equal(res, tgt)

        # check shape
        van = herme.hermevander2d([x1], [x2], [1, 2])
        assert_(van.shape == (1, 5, 6))

    def test_hermevander3d(self):
        # also tests hermeval3d for non-square coefficient array
        x1, x2, x3 = self.x
        c = np.random.random((2, 3, 4))
        van = herme.hermevander3d(x1, x2, x3, [1, 2, 3])
        tgt = herme.hermeval3d(x1, x2, x3, c)
        res = np.dot(van, c.flat)
        assert_almost_equal(res, tgt)

        # check shape
        van = herme.hermevander3d([x1], [x2], [x3], [1, 2, 3])
        assert_(van.shape == (1, 5, 24))


class TestFitting:

    def test_hermefit(self):
        def f(x):
            return x*(x - 1)*(x - 2)

        def f2(x):
            return x**4 + x**2 + 1

        # Test exceptions
        assert_raises(ValueError, herme.hermefit, [1], [1], -1)
        assert_raises(TypeError, herme.hermefit, [[1]], [1], 0)
        assert_raises(TypeError, herme.hermefit, [], [1], 0)
        assert_raises(TypeError, herme.hermefit, [1], [[[1]]], 0)
        assert_raises(TypeError, herme.hermefit, [1, 2], [1], 0)
        assert_raises(TypeError, herme.hermefit, [1], [1, 2], 0)
        assert_raises(TypeError, herme.hermefit, [1], [1], 0, w=[[1]])
        assert_raises(TypeError, herme.hermefit, [1], [1], 0, w=[1, 1])
        assert_raises(ValueError, herme.hermefit, [1], [1], [-1,])
        assert_raises(ValueError, herme.hermefit, [1], [1], [2, -1, 6])
        assert_raises(TypeError, herme.hermefit, [1], [1], [])

        # Test fit
        x = np.linspace(0, 2)
        y = f(x)
        #
        coef3 = herme.hermefit(x, y, 3)
        assert_equal(len(coef3), 4)
        assert_almost_equal(herme.hermeval(x, coef3), y)
        coef3 = herme.hermefit(x, y, [0, 1, 2, 3])
        assert_equal(len(coef3), 4)
        assert_almost_equal(herme.hermeval(x, coef3), y)
        #
        coef4 = herme.hermefit(x, y, 4)
        assert_equal(len(coef4), 5)
        assert_almost_equal(herme.hermeval(x, coef4), y)
        coef4 = herme.hermefit(x, y, [0, 1, 2, 3, 4])
        assert_equal(len(coef4), 5)
        assert_almost_equal(herme.hermeval(x, coef4), y)
        # check things still work if deg is not in strict increasing
        coef4 = herme.hermefit(x, y, [2, 3, 4, 1, 0])
        assert_equal(len(coef4), 5)
        assert_almost_equal(herme.hermeval(x, coef4), y)
        #
        coef2d = herme.hermefit(x, np.array([y, y]).T, 3)
        assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
        coef2d = herme.hermefit(x, np.array([y, y]).T, [0, 1, 2, 3])
        assert_almost_equal(coef2d, np.array([coef3, coef3]).T)
        # test weighting
        w = np.zeros_like(x)
        yw = y.copy()
        w[1::2] = 1
        y[0::2] = 0
        wcoef3 = herme.hermefit(x, yw, 3, w=w)
        assert_almost_equal(wcoef3, coef3)
        wcoef3 = herme.hermefit(x, yw, [0, 1, 2, 3], w=w)
        assert_almost_equal(wcoef3, coef3)
        #
        wcoef2d = herme.hermefit(x, np.array([yw, yw]).T, 3, w=w)
        assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
        wcoef2d = herme.hermefit(x, np.array([yw, yw]).T, [0, 1, 2, 3], w=w)
        assert_almost_equal(wcoef2d, np.array([coef3, coef3]).T)
        # test scaling with complex values x points whose square
        # is zero when summed.
        x = [1, 1j, -1, -1j]
        assert_almost_equal(herme.hermefit(x, x, 1), [0, 1])
        assert_almost_equal(herme.hermefit(x, x, [0, 1]), [0, 1])
        # test fitting only even Legendre polynomials
        x = np.linspace(-1, 1)
        y = f2(x)
        coef1 = herme.hermefit(x, y, 4)
        assert_almost_equal(herme.hermeval(x, coef1), y)
        coef2 = herme.hermefit(x, y, [0, 2, 4])
        assert_almost_equal(herme.hermeval(x, coef2), y)
        assert_almost_equal(coef1, coef2)


class TestCompanion:

    def test_raises(self):
        assert_raises(ValueError, herme.hermecompanion, [])
        assert_raises(ValueError, herme.hermecompanion, [1])

    def test_dimensions(self):
        for i in range(1, 5):
            coef = [0]*i + [1]
            assert_(herme.hermecompanion(coef).shape == (i, i))

    def test_linear_root(self):
        assert_(herme.hermecompanion([1, 2])[0, 0] == -.5)


class TestGauss:

    def test_100(self):
        x, w = herme.hermegauss(100)

        # test orthogonality. Note that the results need to be normalized,
        # otherwise the huge values that can arise from fast growing
        # functions like Laguerre can be very confusing.
        v = herme.hermevander(x, 99)
        vv = np.dot(v.T * w, v)
        vd = 1/np.sqrt(vv.diagonal())
        vv = vd[:, None] * vv * vd
        assert_almost_equal(vv, np.eye(100))

        # check that the integral of 1 is correct
        tgt = np.sqrt(2*np.pi)
        assert_almost_equal(w.sum(), tgt)


class TestMisc:

    def test_hermefromroots(self):
        res = herme.hermefromroots([])
        assert_almost_equal(trim(res), [1])
        for i in range(1, 5):
            roots = np.cos(np.linspace(-np.pi, 0, 2*i + 1)[1::2])
            pol = herme.hermefromroots(roots)
            res = herme.hermeval(roots, pol)
            tgt = 0
            assert_(len(pol) == i + 1)
            assert_almost_equal(herme.herme2poly(pol)[-1], 1)
            assert_almost_equal(res, tgt)

    def test_hermeroots(self):
        assert_almost_equal(herme.hermeroots([1]), [])
        assert_almost_equal(herme.hermeroots([1, 1]), [-1])
        for i in range(2, 5):
            tgt = np.linspace(-1, 1, i)
            res = herme.hermeroots(herme.hermefromroots(tgt))
            assert_almost_equal(trim(res), trim(tgt))

    def test_hermetrim(self):
        coef = [2, -1, 1, 0]

        # Test exceptions
        assert_raises(ValueError, herme.hermetrim, coef, -1)

        # Test results
        assert_equal(herme.hermetrim(coef), coef[:-1])
        assert_equal(herme.hermetrim(coef, 1), coef[:-3])
        assert_equal(herme.hermetrim(coef, 2), [0])

    def test_hermeline(self):
        assert_equal(herme.hermeline(3, 4), [3, 4])

    def test_herme2poly(self):
        for i in range(10):
            assert_almost_equal(herme.herme2poly([0]*i + [1]), Helist[i])

    def test_poly2herme(self):
        for i in range(10):
            assert_almost_equal(herme.poly2herme(Helist[i]), [0]*i + [1])

    def test_weight(self):
        x = np.linspace(-5, 5, 11)
        tgt = np.exp(-.5*x**2)
        res = herme.hermeweight(x)
        assert_almost_equal(res, tgt)