PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/polynomial/tests/
Upload File :
Current File : //opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/polynomial/tests/test_printing.py
from math import nan, inf
import pytest
from numpy.core import array, arange, printoptions
import numpy.polynomial as poly
from numpy.testing import assert_equal, assert_

# For testing polynomial printing with object arrays
from fractions import Fraction
from decimal import Decimal


class TestStrUnicodeSuperSubscripts:

    @pytest.fixture(scope='class', autouse=True)
    def use_unicode(self):
        poly.set_default_printstyle('unicode')

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0·x + 3.0·x²"),
        ([-1, 0, 3, -1], "-1.0 + 0.0·x + 3.0·x² - 1.0·x³"),
        (arange(12), ("0.0 + 1.0·x + 2.0·x² + 3.0·x³ + 4.0·x⁴ + 5.0·x⁵ + "
                      "6.0·x⁶ + 7.0·x⁷ +\n8.0·x⁸ + 9.0·x⁹ + 10.0·x¹⁰ + "
                      "11.0·x¹¹")),
    ))
    def test_polynomial_str(self, inp, tgt):
        res = str(poly.Polynomial(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0·T₁(x) + 3.0·T₂(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0·T₁(x) + 3.0·T₂(x) - 1.0·T₃(x)"),
        (arange(12), ("0.0 + 1.0·T₁(x) + 2.0·T₂(x) + 3.0·T₃(x) + 4.0·T₄(x) + "
                      "5.0·T₅(x) +\n6.0·T₆(x) + 7.0·T₇(x) + 8.0·T₈(x) + "
                      "9.0·T₉(x) + 10.0·T₁₀(x) + 11.0·T₁₁(x)")),
    ))
    def test_chebyshev_str(self, inp, tgt):
        res = str(poly.Chebyshev(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0·P₁(x) + 3.0·P₂(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0·P₁(x) + 3.0·P₂(x) - 1.0·P₃(x)"),
        (arange(12), ("0.0 + 1.0·P₁(x) + 2.0·P₂(x) + 3.0·P₃(x) + 4.0·P₄(x) + "
                      "5.0·P₅(x) +\n6.0·P₆(x) + 7.0·P₇(x) + 8.0·P₈(x) + "
                      "9.0·P₉(x) + 10.0·P₁₀(x) + 11.0·P₁₁(x)")),
    ))
    def test_legendre_str(self, inp, tgt):
        res = str(poly.Legendre(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0·H₁(x) + 3.0·H₂(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0·H₁(x) + 3.0·H₂(x) - 1.0·H₃(x)"),
        (arange(12), ("0.0 + 1.0·H₁(x) + 2.0·H₂(x) + 3.0·H₃(x) + 4.0·H₄(x) + "
                      "5.0·H₅(x) +\n6.0·H₆(x) + 7.0·H₇(x) + 8.0·H₈(x) + "
                      "9.0·H₉(x) + 10.0·H₁₀(x) + 11.0·H₁₁(x)")),
    ))
    def test_hermite_str(self, inp, tgt):
        res = str(poly.Hermite(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0·He₁(x) + 3.0·He₂(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0·He₁(x) + 3.0·He₂(x) - 1.0·He₃(x)"),
        (arange(12), ("0.0 + 1.0·He₁(x) + 2.0·He₂(x) + 3.0·He₃(x) + "
                      "4.0·He₄(x) + 5.0·He₅(x) +\n6.0·He₆(x) + 7.0·He₇(x) + "
                      "8.0·He₈(x) + 9.0·He₉(x) + 10.0·He₁₀(x) +\n"
                      "11.0·He₁₁(x)")),
    ))
    def test_hermiteE_str(self, inp, tgt):
        res = str(poly.HermiteE(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0·L₁(x) + 3.0·L₂(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0·L₁(x) + 3.0·L₂(x) - 1.0·L₃(x)"),
        (arange(12), ("0.0 + 1.0·L₁(x) + 2.0·L₂(x) + 3.0·L₃(x) + 4.0·L₄(x) + "
                      "5.0·L₅(x) +\n6.0·L₆(x) + 7.0·L₇(x) + 8.0·L₈(x) + "
                      "9.0·L₉(x) + 10.0·L₁₀(x) + 11.0·L₁₁(x)")),
    ))
    def test_laguerre_str(self, inp, tgt):
        res = str(poly.Laguerre(inp))
        assert_equal(res, tgt)


class TestStrAscii:

    @pytest.fixture(scope='class', autouse=True)
    def use_ascii(self):
        poly.set_default_printstyle('ascii')

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0 x + 3.0 x**2"),
        ([-1, 0, 3, -1], "-1.0 + 0.0 x + 3.0 x**2 - 1.0 x**3"),
        (arange(12), ("0.0 + 1.0 x + 2.0 x**2 + 3.0 x**3 + 4.0 x**4 + "
                      "5.0 x**5 + 6.0 x**6 +\n7.0 x**7 + 8.0 x**8 + "
                      "9.0 x**9 + 10.0 x**10 + 11.0 x**11")),
    ))
    def test_polynomial_str(self, inp, tgt):
        res = str(poly.Polynomial(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0 T_1(x) + 3.0 T_2(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0 T_1(x) + 3.0 T_2(x) - 1.0 T_3(x)"),
        (arange(12), ("0.0 + 1.0 T_1(x) + 2.0 T_2(x) + 3.0 T_3(x) + "
                      "4.0 T_4(x) + 5.0 T_5(x) +\n6.0 T_6(x) + 7.0 T_7(x) + "
                      "8.0 T_8(x) + 9.0 T_9(x) + 10.0 T_10(x) +\n"
                      "11.0 T_11(x)")),
    ))
    def test_chebyshev_str(self, inp, tgt):
        res = str(poly.Chebyshev(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0 P_1(x) + 3.0 P_2(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0 P_1(x) + 3.0 P_2(x) - 1.0 P_3(x)"),
        (arange(12), ("0.0 + 1.0 P_1(x) + 2.0 P_2(x) + 3.0 P_3(x) + "
                      "4.0 P_4(x) + 5.0 P_5(x) +\n6.0 P_6(x) + 7.0 P_7(x) + "
                      "8.0 P_8(x) + 9.0 P_9(x) + 10.0 P_10(x) +\n"
                      "11.0 P_11(x)")),
    ))
    def test_legendre_str(self, inp, tgt):
        res = str(poly.Legendre(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0 H_1(x) + 3.0 H_2(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0 H_1(x) + 3.0 H_2(x) - 1.0 H_3(x)"),
        (arange(12), ("0.0 + 1.0 H_1(x) + 2.0 H_2(x) + 3.0 H_3(x) + "
                      "4.0 H_4(x) + 5.0 H_5(x) +\n6.0 H_6(x) + 7.0 H_7(x) + "
                      "8.0 H_8(x) + 9.0 H_9(x) + 10.0 H_10(x) +\n"
                      "11.0 H_11(x)")),
    ))
    def test_hermite_str(self, inp, tgt):
        res = str(poly.Hermite(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0 He_1(x) + 3.0 He_2(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0 He_1(x) + 3.0 He_2(x) - 1.0 He_3(x)"),
        (arange(12), ("0.0 + 1.0 He_1(x) + 2.0 He_2(x) + 3.0 He_3(x) + "
                      "4.0 He_4(x) +\n5.0 He_5(x) + 6.0 He_6(x) + "
                      "7.0 He_7(x) + 8.0 He_8(x) + 9.0 He_9(x) +\n"
                      "10.0 He_10(x) + 11.0 He_11(x)")),
    ))
    def test_hermiteE_str(self, inp, tgt):
        res = str(poly.HermiteE(inp))
        assert_equal(res, tgt)

    @pytest.mark.parametrize(('inp', 'tgt'), (
        ([1, 2, 3], "1.0 + 2.0 L_1(x) + 3.0 L_2(x)"),
        ([-1, 0, 3, -1], "-1.0 + 0.0 L_1(x) + 3.0 L_2(x) - 1.0 L_3(x)"),
        (arange(12), ("0.0 + 1.0 L_1(x) + 2.0 L_2(x) + 3.0 L_3(x) + "
                      "4.0 L_4(x) + 5.0 L_5(x) +\n6.0 L_6(x) + 7.0 L_7(x) + "
                      "8.0 L_8(x) + 9.0 L_9(x) + 10.0 L_10(x) +\n"
                      "11.0 L_11(x)")),
    ))
    def test_laguerre_str(self, inp, tgt):
        res = str(poly.Laguerre(inp))
        assert_equal(res, tgt)


class TestLinebreaking:

    @pytest.fixture(scope='class', autouse=True)
    def use_ascii(self):
        poly.set_default_printstyle('ascii')

    def test_single_line_one_less(self):
        # With 'ascii' style, len(str(p)) is default linewidth - 1 (i.e. 74)
        p = poly.Polynomial([12345678, 12345678, 12345678, 12345678, 123])
        assert_equal(len(str(p)), 74)
        assert_equal(str(p), (
            '12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
            '12345678.0 x**3 + 123.0 x**4'
        ))

    def test_num_chars_is_linewidth(self):
        # len(str(p)) == default linewidth == 75
        p = poly.Polynomial([12345678, 12345678, 12345678, 12345678, 1234])
        assert_equal(len(str(p)), 75)
        assert_equal(str(p), (
            '12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
            '12345678.0 x**3 +\n1234.0 x**4'
        ))

    def test_first_linebreak_multiline_one_less_than_linewidth(self):
        # Multiline str where len(first_line) + len(next_term) == lw - 1 == 74
        p = poly.Polynomial(
                [12345678, 12345678, 12345678, 12345678, 1, 12345678]
            )
        assert_equal(len(str(p).split('\n')[0]), 74)
        assert_equal(str(p), (
            '12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
            '12345678.0 x**3 + 1.0 x**4 +\n12345678.0 x**5'
        ))

    def test_first_linebreak_multiline_on_linewidth(self):
        # First line is one character longer than previous test
        p = poly.Polynomial(
                [12345678, 12345678, 12345678, 12345678.12, 1, 12345678]
            )
        assert_equal(str(p), (
            '12345678.0 + 12345678.0 x + 12345678.0 x**2 + '
            '12345678.12 x**3 +\n1.0 x**4 + 12345678.0 x**5'
        ))

    @pytest.mark.parametrize(('lw', 'tgt'), (
        (75, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 + 40000.0 x**4 + '
              '500000.0 x**5 +\n600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 + '
              '900.0 x**9')),
        (45, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 +\n40000.0 x**4 + '
              '500000.0 x**5 +\n600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 +\n'
              '900.0 x**9')),
        (132, ('0.0 + 10.0 x + 200.0 x**2 + 3000.0 x**3 + 40000.0 x**4 + '
               '500000.0 x**5 + 600000.0 x**6 + 70000.0 x**7 + 8000.0 x**8 + '
               '900.0 x**9')),
    ))
    def test_linewidth_printoption(self, lw, tgt):
        p = poly.Polynomial(
            [0, 10, 200, 3000, 40000, 500000, 600000, 70000, 8000, 900]
        )
        with printoptions(linewidth=lw):
            assert_equal(str(p), tgt)
            for line in str(p).split('\n'):
                assert_(len(line) < lw)


def test_set_default_printoptions():
    p = poly.Polynomial([1, 2, 3])
    c = poly.Chebyshev([1, 2, 3])
    poly.set_default_printstyle('ascii')
    assert_equal(str(p), "1.0 + 2.0 x + 3.0 x**2")
    assert_equal(str(c), "1.0 + 2.0 T_1(x) + 3.0 T_2(x)")
    poly.set_default_printstyle('unicode')
    assert_equal(str(p), "1.0 + 2.0·x + 3.0·x²")
    assert_equal(str(c), "1.0 + 2.0·T₁(x) + 3.0·T₂(x)")
    with pytest.raises(ValueError):
        poly.set_default_printstyle('invalid_input')


def test_complex_coefficients():
    """Test both numpy and built-in complex."""
    coefs = [0+1j, 1+1j, -2+2j, 3+0j]
    # numpy complex
    p1 = poly.Polynomial(coefs)
    # Python complex
    p2 = poly.Polynomial(array(coefs, dtype=object))
    poly.set_default_printstyle('unicode')
    assert_equal(str(p1), "1j + (1+1j)·x - (2-2j)·x² + (3+0j)·x³")
    assert_equal(str(p2), "1j + (1+1j)·x + (-2+2j)·x² + (3+0j)·x³")
    poly.set_default_printstyle('ascii')
    assert_equal(str(p1), "1j + (1+1j) x - (2-2j) x**2 + (3+0j) x**3")
    assert_equal(str(p2), "1j + (1+1j) x + (-2+2j) x**2 + (3+0j) x**3")


@pytest.mark.parametrize(('coefs', 'tgt'), (
    (array([Fraction(1, 2), Fraction(3, 4)], dtype=object), (
        "1/2 + 3/4·x"
    )),
    (array([1, 2, Fraction(5, 7)], dtype=object), (
        "1 + 2·x + 5/7·x²"
    )),
    (array([Decimal('1.00'), Decimal('2.2'), 3], dtype=object), (
        "1.00 + 2.2·x + 3·x²"
    )),
))
def test_numeric_object_coefficients(coefs, tgt):
    p = poly.Polynomial(coefs)
    poly.set_default_printstyle('unicode')
    assert_equal(str(p), tgt)


@pytest.mark.parametrize(('coefs', 'tgt'), (
    (array([1, 2, 'f'], dtype=object), '1 + 2·x + f·x²'),
    (array([1, 2, [3, 4]], dtype=object), '1 + 2·x + [3, 4]·x²'),
))
def test_nonnumeric_object_coefficients(coefs, tgt):
    """
    Test coef fallback for object arrays of non-numeric coefficients.
    """
    p = poly.Polynomial(coefs)
    poly.set_default_printstyle('unicode')
    assert_equal(str(p), tgt)


class TestFormat:
    def test_format_unicode(self):
        poly.set_default_printstyle('ascii')
        p = poly.Polynomial([1, 2, 0, -1])
        assert_equal(format(p, 'unicode'), "1.0 + 2.0·x + 0.0·x² - 1.0·x³")

    def test_format_ascii(self):
        poly.set_default_printstyle('unicode')
        p = poly.Polynomial([1, 2, 0, -1])
        assert_equal(
            format(p, 'ascii'), "1.0 + 2.0 x + 0.0 x**2 - 1.0 x**3"
        )

    def test_empty_formatstr(self):
        poly.set_default_printstyle('ascii')
        p = poly.Polynomial([1, 2, 3])
        assert_equal(format(p), "1.0 + 2.0 x + 3.0 x**2")
        assert_equal(f"{p}", "1.0 + 2.0 x + 3.0 x**2")

    def test_bad_formatstr(self):
        p = poly.Polynomial([1, 2, 0, -1])
        with pytest.raises(ValueError):
            format(p, '.2f')


@pytest.mark.parametrize(('poly', 'tgt'), (
    (poly.Polynomial, '1.0 + 2.0·z + 3.0·z²'),
    (poly.Chebyshev, '1.0 + 2.0·T₁(z) + 3.0·T₂(z)'),
    (poly.Hermite, '1.0 + 2.0·H₁(z) + 3.0·H₂(z)'),
    (poly.HermiteE, '1.0 + 2.0·He₁(z) + 3.0·He₂(z)'),
    (poly.Laguerre, '1.0 + 2.0·L₁(z) + 3.0·L₂(z)'),
    (poly.Legendre, '1.0 + 2.0·P₁(z) + 3.0·P₂(z)'),
))
def test_symbol(poly, tgt):
    p = poly([1, 2, 3], symbol='z')
    assert_equal(f"{p:unicode}", tgt)


class TestRepr:
    def test_polynomial_str(self):
        res = repr(poly.Polynomial([0, 1]))
        tgt = (
            "Polynomial([0., 1.], domain=[-1,  1], window=[-1,  1], "
            "symbol='x')"
        )
        assert_equal(res, tgt)

    def test_chebyshev_str(self):
        res = repr(poly.Chebyshev([0, 1]))
        tgt = (
            "Chebyshev([0., 1.], domain=[-1,  1], window=[-1,  1], "
            "symbol='x')"
        )
        assert_equal(res, tgt)

    def test_legendre_repr(self):
        res = repr(poly.Legendre([0, 1]))
        tgt = (
            "Legendre([0., 1.], domain=[-1,  1], window=[-1,  1], "
            "symbol='x')"
        )
        assert_equal(res, tgt)

    def test_hermite_repr(self):
        res = repr(poly.Hermite([0, 1]))
        tgt = (
            "Hermite([0., 1.], domain=[-1,  1], window=[-1,  1], "
            "symbol='x')"
        )
        assert_equal(res, tgt)

    def test_hermiteE_repr(self):
        res = repr(poly.HermiteE([0, 1]))
        tgt = (
            "HermiteE([0., 1.], domain=[-1,  1], window=[-1,  1], "
            "symbol='x')"
        )
        assert_equal(res, tgt)

    def test_laguerre_repr(self):
        res = repr(poly.Laguerre([0, 1]))
        tgt = (
            "Laguerre([0., 1.], domain=[0, 1], window=[0, 1], "
            "symbol='x')"
        )
        assert_equal(res, tgt)


class TestLatexRepr:
    """Test the latex repr used by Jupyter"""

    def as_latex(self, obj):
        # right now we ignore the formatting of scalars in our tests, since
        # it makes them too verbose. Ideally, the formatting of scalars will
        # be fixed such that tests below continue to pass
        obj._repr_latex_scalar = lambda x, parens=False: str(x)
        try:
            return obj._repr_latex_()
        finally:
            del obj._repr_latex_scalar

    def test_simple_polynomial(self):
        # default input
        p = poly.Polynomial([1, 2, 3])
        assert_equal(self.as_latex(p),
            r'$x \mapsto 1.0 + 2.0\,x + 3.0\,x^{2}$')

        # translated input
        p = poly.Polynomial([1, 2, 3], domain=[-2, 0])
        assert_equal(self.as_latex(p),
            r'$x \mapsto 1.0 + 2.0\,\left(1.0 + x\right) + 3.0\,\left(1.0 + x\right)^{2}$')

        # scaled input
        p = poly.Polynomial([1, 2, 3], domain=[-0.5, 0.5])
        assert_equal(self.as_latex(p),
            r'$x \mapsto 1.0 + 2.0\,\left(2.0x\right) + 3.0\,\left(2.0x\right)^{2}$')

        # affine input
        p = poly.Polynomial([1, 2, 3], domain=[-1, 0])
        assert_equal(self.as_latex(p),
            r'$x \mapsto 1.0 + 2.0\,\left(1.0 + 2.0x\right) + 3.0\,\left(1.0 + 2.0x\right)^{2}$')

    def test_basis_func(self):
        p = poly.Chebyshev([1, 2, 3])
        assert_equal(self.as_latex(p),
            r'$x \mapsto 1.0\,{T}_{0}(x) + 2.0\,{T}_{1}(x) + 3.0\,{T}_{2}(x)$')
        # affine input - check no surplus parens are added
        p = poly.Chebyshev([1, 2, 3], domain=[-1, 0])
        assert_equal(self.as_latex(p),
            r'$x \mapsto 1.0\,{T}_{0}(1.0 + 2.0x) + 2.0\,{T}_{1}(1.0 + 2.0x) + 3.0\,{T}_{2}(1.0 + 2.0x)$')

    def test_multichar_basis_func(self):
        p = poly.HermiteE([1, 2, 3])
        assert_equal(self.as_latex(p),
            r'$x \mapsto 1.0\,{He}_{0}(x) + 2.0\,{He}_{1}(x) + 3.0\,{He}_{2}(x)$')

    def test_symbol_basic(self):
        # default input
        p = poly.Polynomial([1, 2, 3], symbol='z')
        assert_equal(self.as_latex(p),
            r'$z \mapsto 1.0 + 2.0\,z + 3.0\,z^{2}$')

        # translated input
        p = poly.Polynomial([1, 2, 3], domain=[-2, 0], symbol='z')
        assert_equal(
            self.as_latex(p),
            (
                r'$z \mapsto 1.0 + 2.0\,\left(1.0 + z\right) + 3.0\,'
                r'\left(1.0 + z\right)^{2}$'
            ),
        )

        # scaled input
        p = poly.Polynomial([1, 2, 3], domain=[-0.5, 0.5], symbol='z')
        assert_equal(
            self.as_latex(p),
            (
                r'$z \mapsto 1.0 + 2.0\,\left(2.0z\right) + 3.0\,'
                r'\left(2.0z\right)^{2}$'
            ),
        )

        # affine input
        p = poly.Polynomial([1, 2, 3], domain=[-1, 0], symbol='z')
        assert_equal(
            self.as_latex(p),
            (
                r'$z \mapsto 1.0 + 2.0\,\left(1.0 + 2.0z\right) + 3.0\,'
                r'\left(1.0 + 2.0z\right)^{2}$'
            ),
        )


SWITCH_TO_EXP = (
    '1.0 + (1.0e-01) x + (1.0e-02) x**2',
    '1.2 + (1.2e-01) x + (1.2e-02) x**2',
    '1.23 + 0.12 x + (1.23e-02) x**2 + (1.23e-03) x**3',
    '1.235 + 0.123 x + (1.235e-02) x**2 + (1.235e-03) x**3',
    '1.2346 + 0.1235 x + 0.0123 x**2 + (1.2346e-03) x**3 + (1.2346e-04) x**4',
    '1.23457 + 0.12346 x + 0.01235 x**2 + (1.23457e-03) x**3 + '
    '(1.23457e-04) x**4',
    '1.234568 + 0.123457 x + 0.012346 x**2 + 0.001235 x**3 + '
    '(1.234568e-04) x**4 + (1.234568e-05) x**5',
    '1.2345679 + 0.1234568 x + 0.0123457 x**2 + 0.0012346 x**3 + '
    '(1.2345679e-04) x**4 + (1.2345679e-05) x**5')

class TestPrintOptions:
    """
    Test the output is properly configured via printoptions.
    The exponential notation is enabled automatically when the values 
    are too small or too large.
    """

    @pytest.fixture(scope='class', autouse=True)
    def use_ascii(self):
        poly.set_default_printstyle('ascii')

    def test_str(self):
        p = poly.Polynomial([1/2, 1/7, 1/7*10**8, 1/7*10**9])
        assert_equal(str(p), '0.5 + 0.14285714 x + 14285714.28571429 x**2 '
                             '+ (1.42857143e+08) x**3')

        with printoptions(precision=3):
            assert_equal(str(p), '0.5 + 0.143 x + 14285714.286 x**2 '
                                 '+ (1.429e+08) x**3')

    def test_latex(self):
        p = poly.Polynomial([1/2, 1/7, 1/7*10**8, 1/7*10**9])
        assert_equal(p._repr_latex_(),
            r'$x \mapsto \text{0.5} + \text{0.14285714}\,x + '
            r'\text{14285714.28571429}\,x^{2} + '
            r'\text{(1.42857143e+08)}\,x^{3}$')
        
        with printoptions(precision=3):
            assert_equal(p._repr_latex_(),
                r'$x \mapsto \text{0.5} + \text{0.143}\,x + '
                r'\text{14285714.286}\,x^{2} + \text{(1.429e+08)}\,x^{3}$')

    def test_fixed(self):
        p = poly.Polynomial([1/2])
        assert_equal(str(p), '0.5')
        
        with printoptions(floatmode='fixed'):
            assert_equal(str(p), '0.50000000')
        
        with printoptions(floatmode='fixed', precision=4):
            assert_equal(str(p), '0.5000')

    def test_switch_to_exp(self):
        for i, s in enumerate(SWITCH_TO_EXP):
            with printoptions(precision=i):
                p = poly.Polynomial([1.23456789*10**-i 
                                     for i in range(i//2+3)])
                assert str(p).replace('\n', ' ') == s 
    
    def test_non_finite(self):
        p = poly.Polynomial([nan, inf])
        assert str(p) == 'nan + inf x'
        assert p._repr_latex_() == r'$x \mapsto \text{nan} + \text{inf}\,x$'
        with printoptions(nanstr='NAN', infstr='INF'):
            assert str(p) == 'NAN + INF x'
            assert p._repr_latex_() == \
                r'$x \mapsto \text{NAN} + \text{INF}\,x$'