PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/core/
Upload File :
Current File : //proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/core/function_base.py
import functools
import warnings
import operator
import types

import numpy as np
from . import numeric as _nx
from .numeric import result_type, NaN, asanyarray, ndim
from numpy.core.multiarray import add_docstring
from numpy.core import overrides

__all__ = ['logspace', 'linspace', 'geomspace']


array_function_dispatch = functools.partial(
    overrides.array_function_dispatch, module='numpy')


def _linspace_dispatcher(start, stop, num=None, endpoint=None, retstep=None,
                         dtype=None, axis=None):
    return (start, stop)


@array_function_dispatch(_linspace_dispatcher)
def linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None,
             axis=0):
    """
    Return evenly spaced numbers over a specified interval.

    Returns `num` evenly spaced samples, calculated over the
    interval [`start`, `stop`].

    The endpoint of the interval can optionally be excluded.

    .. versionchanged:: 1.16.0
        Non-scalar `start` and `stop` are now supported.

    .. versionchanged:: 1.20.0
        Values are rounded towards ``-inf`` instead of ``0`` when an
        integer ``dtype`` is specified. The old behavior can
        still be obtained with ``np.linspace(start, stop, num).astype(int)``

    Parameters
    ----------
    start : array_like
        The starting value of the sequence.
    stop : array_like
        The end value of the sequence, unless `endpoint` is set to False.
        In that case, the sequence consists of all but the last of ``num + 1``
        evenly spaced samples, so that `stop` is excluded.  Note that the step
        size changes when `endpoint` is False.
    num : int, optional
        Number of samples to generate. Default is 50. Must be non-negative.
    endpoint : bool, optional
        If True, `stop` is the last sample. Otherwise, it is not included.
        Default is True.
    retstep : bool, optional
        If True, return (`samples`, `step`), where `step` is the spacing
        between samples.
    dtype : dtype, optional
        The type of the output array.  If `dtype` is not given, the data type
        is inferred from `start` and `stop`. The inferred dtype will never be
        an integer; `float` is chosen even if the arguments would produce an
        array of integers.

        .. versionadded:: 1.9.0

    axis : int, optional
        The axis in the result to store the samples.  Relevant only if start
        or stop are array-like.  By default (0), the samples will be along a
        new axis inserted at the beginning. Use -1 to get an axis at the end.

        .. versionadded:: 1.16.0

    Returns
    -------
    samples : ndarray
        There are `num` equally spaced samples in the closed interval
        ``[start, stop]`` or the half-open interval ``[start, stop)``
        (depending on whether `endpoint` is True or False).
    step : float, optional
        Only returned if `retstep` is True

        Size of spacing between samples.


    See Also
    --------
    arange : Similar to `linspace`, but uses a step size (instead of the
             number of samples).
    geomspace : Similar to `linspace`, but with numbers spaced evenly on a log
                scale (a geometric progression).
    logspace : Similar to `geomspace`, but with the end points specified as
               logarithms.
    :ref:`how-to-partition`

    Examples
    --------
    >>> np.linspace(2.0, 3.0, num=5)
    array([2.  , 2.25, 2.5 , 2.75, 3.  ])
    >>> np.linspace(2.0, 3.0, num=5, endpoint=False)
    array([2. ,  2.2,  2.4,  2.6,  2.8])
    >>> np.linspace(2.0, 3.0, num=5, retstep=True)
    (array([2.  ,  2.25,  2.5 ,  2.75,  3.  ]), 0.25)

    Graphical illustration:

    >>> import matplotlib.pyplot as plt
    >>> N = 8
    >>> y = np.zeros(N)
    >>> x1 = np.linspace(0, 10, N, endpoint=True)
    >>> x2 = np.linspace(0, 10, N, endpoint=False)
    >>> plt.plot(x1, y, 'o')
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.plot(x2, y + 0.5, 'o')
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.ylim([-0.5, 1])
    (-0.5, 1)
    >>> plt.show()

    """
    num = operator.index(num)
    if num < 0:
        raise ValueError("Number of samples, %s, must be non-negative." % num)
    div = (num - 1) if endpoint else num

    # Convert float/complex array scalars to float, gh-3504
    # and make sure one can use variables that have an __array_interface__, gh-6634
    start = asanyarray(start) * 1.0
    stop  = asanyarray(stop)  * 1.0

    dt = result_type(start, stop, float(num))
    if dtype is None:
        dtype = dt
        integer_dtype = False
    else:
        integer_dtype = _nx.issubdtype(dtype, _nx.integer)

    delta = stop - start
    y = _nx.arange(0, num, dtype=dt).reshape((-1,) + (1,) * ndim(delta))
    # In-place multiplication y *= delta/div is faster, but prevents the multiplicant
    # from overriding what class is produced, and thus prevents, e.g. use of Quantities,
    # see gh-7142. Hence, we multiply in place only for standard scalar types.
    if div > 0:
        _mult_inplace = _nx.isscalar(delta)
        step = delta / div
        any_step_zero = (
            step == 0 if _mult_inplace else _nx.asanyarray(step == 0).any())
        if any_step_zero:
            # Special handling for denormal numbers, gh-5437
            y /= div
            if _mult_inplace:
                y *= delta
            else:
                y = y * delta
        else:
            if _mult_inplace:
                y *= step
            else:
                y = y * step
    else:
        # sequences with 0 items or 1 item with endpoint=True (i.e. div <= 0)
        # have an undefined step
        step = NaN
        # Multiply with delta to allow possible override of output class.
        y = y * delta

    y += start

    if endpoint and num > 1:
        y[-1, ...] = stop

    if axis != 0:
        y = _nx.moveaxis(y, 0, axis)

    if integer_dtype:
        _nx.floor(y, out=y)

    if retstep:
        return y.astype(dtype, copy=False), step
    else:
        return y.astype(dtype, copy=False)


def _logspace_dispatcher(start, stop, num=None, endpoint=None, base=None,
                         dtype=None, axis=None):
    return (start, stop, base)


@array_function_dispatch(_logspace_dispatcher)
def logspace(start, stop, num=50, endpoint=True, base=10.0, dtype=None,
             axis=0):
    """
    Return numbers spaced evenly on a log scale.

    In linear space, the sequence starts at ``base ** start``
    (`base` to the power of `start`) and ends with ``base ** stop``
    (see `endpoint` below).

    .. versionchanged:: 1.16.0
        Non-scalar `start` and `stop` are now supported.

    .. versionchanged:: 1.25.0
        Non-scalar 'base` is now supported

    Parameters
    ----------
    start : array_like
        ``base ** start`` is the starting value of the sequence.
    stop : array_like
        ``base ** stop`` is the final value of the sequence, unless `endpoint`
        is False.  In that case, ``num + 1`` values are spaced over the
        interval in log-space, of which all but the last (a sequence of
        length `num`) are returned.
    num : integer, optional
        Number of samples to generate.  Default is 50.
    endpoint : boolean, optional
        If true, `stop` is the last sample. Otherwise, it is not included.
        Default is True.
    base : array_like, optional
        The base of the log space. The step size between the elements in
        ``ln(samples) / ln(base)`` (or ``log_base(samples)``) is uniform.
        Default is 10.0.
    dtype : dtype
        The type of the output array.  If `dtype` is not given, the data type
        is inferred from `start` and `stop`. The inferred type will never be
        an integer; `float` is chosen even if the arguments would produce an
        array of integers.
    axis : int, optional
        The axis in the result to store the samples.  Relevant only if start,
        stop, or base are array-like.  By default (0), the samples will be
        along a new axis inserted at the beginning. Use -1 to get an axis at
        the end.

        .. versionadded:: 1.16.0


    Returns
    -------
    samples : ndarray
        `num` samples, equally spaced on a log scale.

    See Also
    --------
    arange : Similar to linspace, with the step size specified instead of the
             number of samples. Note that, when used with a float endpoint, the
             endpoint may or may not be included.
    linspace : Similar to logspace, but with the samples uniformly distributed
               in linear space, instead of log space.
    geomspace : Similar to logspace, but with endpoints specified directly.
    :ref:`how-to-partition`

    Notes
    -----
    If base is a scalar, logspace is equivalent to the code

    >>> y = np.linspace(start, stop, num=num, endpoint=endpoint)
    ... # doctest: +SKIP
    >>> power(base, y).astype(dtype)
    ... # doctest: +SKIP

    Examples
    --------
    >>> np.logspace(2.0, 3.0, num=4)
    array([ 100.        ,  215.443469  ,  464.15888336, 1000.        ])
    >>> np.logspace(2.0, 3.0, num=4, endpoint=False)
    array([100.        ,  177.827941  ,  316.22776602,  562.34132519])
    >>> np.logspace(2.0, 3.0, num=4, base=2.0)
    array([4.        ,  5.0396842 ,  6.34960421,  8.        ])
    >>> np.logspace(2.0, 3.0, num=4, base=[2.0, 3.0], axis=-1)
    array([[ 4.        ,  5.0396842 ,  6.34960421,  8.        ],
           [ 9.        , 12.98024613, 18.72075441, 27.        ]])

    Graphical illustration:

    >>> import matplotlib.pyplot as plt
    >>> N = 10
    >>> x1 = np.logspace(0.1, 1, N, endpoint=True)
    >>> x2 = np.logspace(0.1, 1, N, endpoint=False)
    >>> y = np.zeros(N)
    >>> plt.plot(x1, y, 'o')
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.plot(x2, y + 0.5, 'o')
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.ylim([-0.5, 1])
    (-0.5, 1)
    >>> plt.show()

    """
    ndmax = np.broadcast(start, stop, base).ndim
    start, stop, base = (
        np.array(a, copy=False, subok=True, ndmin=ndmax)
        for a in (start, stop, base)
    )
    y = linspace(start, stop, num=num, endpoint=endpoint, axis=axis)
    base = np.expand_dims(base, axis=axis)
    if dtype is None:
        return _nx.power(base, y)
    return _nx.power(base, y).astype(dtype, copy=False)


def _geomspace_dispatcher(start, stop, num=None, endpoint=None, dtype=None,
                          axis=None):
    return (start, stop)


@array_function_dispatch(_geomspace_dispatcher)
def geomspace(start, stop, num=50, endpoint=True, dtype=None, axis=0):
    """
    Return numbers spaced evenly on a log scale (a geometric progression).

    This is similar to `logspace`, but with endpoints specified directly.
    Each output sample is a constant multiple of the previous.

    .. versionchanged:: 1.16.0
        Non-scalar `start` and `stop` are now supported.

    Parameters
    ----------
    start : array_like
        The starting value of the sequence.
    stop : array_like
        The final value of the sequence, unless `endpoint` is False.
        In that case, ``num + 1`` values are spaced over the
        interval in log-space, of which all but the last (a sequence of
        length `num`) are returned.
    num : integer, optional
        Number of samples to generate.  Default is 50.
    endpoint : boolean, optional
        If true, `stop` is the last sample. Otherwise, it is not included.
        Default is True.
    dtype : dtype
        The type of the output array.  If `dtype` is not given, the data type
        is inferred from `start` and `stop`. The inferred dtype will never be
        an integer; `float` is chosen even if the arguments would produce an
        array of integers.
    axis : int, optional
        The axis in the result to store the samples.  Relevant only if start
        or stop are array-like.  By default (0), the samples will be along a
        new axis inserted at the beginning. Use -1 to get an axis at the end.

        .. versionadded:: 1.16.0

    Returns
    -------
    samples : ndarray
        `num` samples, equally spaced on a log scale.

    See Also
    --------
    logspace : Similar to geomspace, but with endpoints specified using log
               and base.
    linspace : Similar to geomspace, but with arithmetic instead of geometric
               progression.
    arange : Similar to linspace, with the step size specified instead of the
             number of samples.
    :ref:`how-to-partition`

    Notes
    -----
    If the inputs or dtype are complex, the output will follow a logarithmic
    spiral in the complex plane.  (There are an infinite number of spirals
    passing through two points; the output will follow the shortest such path.)

    Examples
    --------
    >>> np.geomspace(1, 1000, num=4)
    array([    1.,    10.,   100.,  1000.])
    >>> np.geomspace(1, 1000, num=3, endpoint=False)
    array([   1.,   10.,  100.])
    >>> np.geomspace(1, 1000, num=4, endpoint=False)
    array([   1.        ,    5.62341325,   31.6227766 ,  177.827941  ])
    >>> np.geomspace(1, 256, num=9)
    array([   1.,    2.,    4.,    8.,   16.,   32.,   64.,  128.,  256.])

    Note that the above may not produce exact integers:

    >>> np.geomspace(1, 256, num=9, dtype=int)
    array([  1,   2,   4,   7,  16,  32,  63, 127, 256])
    >>> np.around(np.geomspace(1, 256, num=9)).astype(int)
    array([  1,   2,   4,   8,  16,  32,  64, 128, 256])

    Negative, decreasing, and complex inputs are allowed:

    >>> np.geomspace(1000, 1, num=4)
    array([1000.,  100.,   10.,    1.])
    >>> np.geomspace(-1000, -1, num=4)
    array([-1000.,  -100.,   -10.,    -1.])
    >>> np.geomspace(1j, 1000j, num=4)  # Straight line
    array([0.   +1.j, 0.  +10.j, 0. +100.j, 0.+1000.j])
    >>> np.geomspace(-1+0j, 1+0j, num=5)  # Circle
    array([-1.00000000e+00+1.22464680e-16j, -7.07106781e-01+7.07106781e-01j,
            6.12323400e-17+1.00000000e+00j,  7.07106781e-01+7.07106781e-01j,
            1.00000000e+00+0.00000000e+00j])

    Graphical illustration of `endpoint` parameter:

    >>> import matplotlib.pyplot as plt
    >>> N = 10
    >>> y = np.zeros(N)
    >>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=True), y + 1, 'o')
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.semilogx(np.geomspace(1, 1000, N, endpoint=False), y + 2, 'o')
    [<matplotlib.lines.Line2D object at 0x...>]
    >>> plt.axis([0.5, 2000, 0, 3])
    [0.5, 2000, 0, 3]
    >>> plt.grid(True, color='0.7', linestyle='-', which='both', axis='both')
    >>> plt.show()

    """
    start = asanyarray(start)
    stop = asanyarray(stop)
    if _nx.any(start == 0) or _nx.any(stop == 0):
        raise ValueError('Geometric sequence cannot include zero')

    dt = result_type(start, stop, float(num), _nx.zeros((), dtype))
    if dtype is None:
        dtype = dt
    else:
        # complex to dtype('complex128'), for instance
        dtype = _nx.dtype(dtype)

    # Promote both arguments to the same dtype in case, for instance, one is
    # complex and another is negative and log would produce NaN otherwise.
    # Copy since we may change things in-place further down.
    start = start.astype(dt, copy=True)
    stop = stop.astype(dt, copy=True)

    out_sign = _nx.ones(_nx.broadcast(start, stop).shape, dt)
    # Avoid negligible real or imaginary parts in output by rotating to
    # positive real, calculating, then undoing rotation
    if _nx.issubdtype(dt, _nx.complexfloating):
        all_imag = (start.real == 0.) & (stop.real == 0.)
        if _nx.any(all_imag):
            start[all_imag] = start[all_imag].imag
            stop[all_imag] = stop[all_imag].imag
            out_sign[all_imag] = 1j

    both_negative = (_nx.sign(start) == -1) & (_nx.sign(stop) == -1)
    if _nx.any(both_negative):
        _nx.negative(start, out=start, where=both_negative)
        _nx.negative(stop, out=stop, where=both_negative)
        _nx.negative(out_sign, out=out_sign, where=both_negative)

    log_start = _nx.log10(start)
    log_stop = _nx.log10(stop)
    result = logspace(log_start, log_stop, num=num,
                      endpoint=endpoint, base=10.0, dtype=dtype)

    # Make sure the endpoints match the start and stop arguments. This is
    # necessary because np.exp(np.log(x)) is not necessarily equal to x.
    if num > 0:
        result[0] = start
        if num > 1 and endpoint:
            result[-1] = stop

    result = out_sign * result

    if axis != 0:
        result = _nx.moveaxis(result, 0, axis)

    return result.astype(dtype, copy=False)


def _needs_add_docstring(obj):
    """
    Returns true if the only way to set the docstring of `obj` from python is
    via add_docstring.

    This function errs on the side of being overly conservative.
    """
    Py_TPFLAGS_HEAPTYPE = 1 << 9

    if isinstance(obj, (types.FunctionType, types.MethodType, property)):
        return False

    if isinstance(obj, type) and obj.__flags__ & Py_TPFLAGS_HEAPTYPE:
        return False

    return True


def _add_docstring(obj, doc, warn_on_python):
    if warn_on_python and not _needs_add_docstring(obj):
        warnings.warn(
            "add_newdoc was used on a pure-python object {}. "
            "Prefer to attach it directly to the source."
            .format(obj),
            UserWarning,
            stacklevel=3)
    try:
        add_docstring(obj, doc)
    except Exception:
        pass


def add_newdoc(place, obj, doc, warn_on_python=True):
    """
    Add documentation to an existing object, typically one defined in C

    The purpose is to allow easier editing of the docstrings without requiring
    a re-compile. This exists primarily for internal use within numpy itself.

    Parameters
    ----------
    place : str
        The absolute name of the module to import from
    obj : str
        The name of the object to add documentation to, typically a class or
        function name
    doc : {str, Tuple[str, str], List[Tuple[str, str]]}
        If a string, the documentation to apply to `obj`

        If a tuple, then the first element is interpreted as an attribute of
        `obj` and the second as the docstring to apply - ``(method, docstring)``

        If a list, then each element of the list should be a tuple of length
        two - ``[(method1, docstring1), (method2, docstring2), ...]``
    warn_on_python : bool
        If True, the default, emit `UserWarning` if this is used to attach
        documentation to a pure-python object.

    Notes
    -----
    This routine never raises an error if the docstring can't be written, but
    will raise an error if the object being documented does not exist.

    This routine cannot modify read-only docstrings, as appear
    in new-style classes or built-in functions. Because this
    routine never raises an error the caller must check manually
    that the docstrings were changed.

    Since this function grabs the ``char *`` from a c-level str object and puts
    it into the ``tp_doc`` slot of the type of `obj`, it violates a number of
    C-API best-practices, by:

    - modifying a `PyTypeObject` after calling `PyType_Ready`
    - calling `Py_INCREF` on the str and losing the reference, so the str
      will never be released

    If possible it should be avoided.
    """
    new = getattr(__import__(place, globals(), {}, [obj]), obj)
    if isinstance(doc, str):
        _add_docstring(new, doc.strip(), warn_on_python)
    elif isinstance(doc, tuple):
        attr, docstring = doc
        _add_docstring(getattr(new, attr), docstring.strip(), warn_on_python)
    elif isinstance(doc, list):
        for attr, docstring in doc:
            _add_docstring(getattr(new, attr), docstring.strip(), warn_on_python)