PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/f2py/tests/
Upload File :
Current File : //proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/f2py/tests/test_symbolic.py
import pytest

from numpy.f2py.symbolic import (
    Expr,
    Op,
    ArithOp,
    Language,
    as_symbol,
    as_number,
    as_string,
    as_array,
    as_complex,
    as_terms,
    as_factors,
    eliminate_quotes,
    insert_quotes,
    fromstring,
    as_expr,
    as_apply,
    as_numer_denom,
    as_ternary,
    as_ref,
    as_deref,
    normalize,
    as_eq,
    as_ne,
    as_lt,
    as_gt,
    as_le,
    as_ge,
)
from . import util


class TestSymbolic(util.F2PyTest):
    def test_eliminate_quotes(self):
        def worker(s):
            r, d = eliminate_quotes(s)
            s1 = insert_quotes(r, d)
            assert s1 == s

        for kind in ["", "mykind_"]:
            worker(kind + '"1234" // "ABCD"')
            worker(kind + '"1234" // ' + kind + '"ABCD"')
            worker(kind + "\"1234\" // 'ABCD'")
            worker(kind + '"1234" // ' + kind + "'ABCD'")
            worker(kind + '"1\\"2\'AB\'34"')
            worker("a = " + kind + "'1\\'2\"AB\"34'")

    def test_sanity(self):
        x = as_symbol("x")
        y = as_symbol("y")
        z = as_symbol("z")

        assert x.op == Op.SYMBOL
        assert repr(x) == "Expr(Op.SYMBOL, 'x')"
        assert x == x
        assert x != y
        assert hash(x) is not None

        n = as_number(123)
        m = as_number(456)
        assert n.op == Op.INTEGER
        assert repr(n) == "Expr(Op.INTEGER, (123, 4))"
        assert n == n
        assert n != m
        assert hash(n) is not None

        fn = as_number(12.3)
        fm = as_number(45.6)
        assert fn.op == Op.REAL
        assert repr(fn) == "Expr(Op.REAL, (12.3, 4))"
        assert fn == fn
        assert fn != fm
        assert hash(fn) is not None

        c = as_complex(1, 2)
        c2 = as_complex(3, 4)
        assert c.op == Op.COMPLEX
        assert repr(c) == ("Expr(Op.COMPLEX, (Expr(Op.INTEGER, (1, 4)),"
                           " Expr(Op.INTEGER, (2, 4))))")
        assert c == c
        assert c != c2
        assert hash(c) is not None

        s = as_string("'123'")
        s2 = as_string('"ABC"')
        assert s.op == Op.STRING
        assert repr(s) == "Expr(Op.STRING, (\"'123'\", 1))", repr(s)
        assert s == s
        assert s != s2

        a = as_array((n, m))
        b = as_array((n, ))
        assert a.op == Op.ARRAY
        assert repr(a) == ("Expr(Op.ARRAY, (Expr(Op.INTEGER, (123, 4)),"
                           " Expr(Op.INTEGER, (456, 4))))")
        assert a == a
        assert a != b

        t = as_terms(x)
        u = as_terms(y)
        assert t.op == Op.TERMS
        assert repr(t) == "Expr(Op.TERMS, {Expr(Op.SYMBOL, 'x'): 1})"
        assert t == t
        assert t != u
        assert hash(t) is not None

        v = as_factors(x)
        w = as_factors(y)
        assert v.op == Op.FACTORS
        assert repr(v) == "Expr(Op.FACTORS, {Expr(Op.SYMBOL, 'x'): 1})"
        assert v == v
        assert w != v
        assert hash(v) is not None

        t = as_ternary(x, y, z)
        u = as_ternary(x, z, y)
        assert t.op == Op.TERNARY
        assert t == t
        assert t != u
        assert hash(t) is not None

        e = as_eq(x, y)
        f = as_lt(x, y)
        assert e.op == Op.RELATIONAL
        assert e == e
        assert e != f
        assert hash(e) is not None

    def test_tostring_fortran(self):
        x = as_symbol("x")
        y = as_symbol("y")
        z = as_symbol("z")
        n = as_number(123)
        m = as_number(456)
        a = as_array((n, m))
        c = as_complex(n, m)

        assert str(x) == "x"
        assert str(n) == "123"
        assert str(a) == "[123, 456]"
        assert str(c) == "(123, 456)"

        assert str(Expr(Op.TERMS, {x: 1})) == "x"
        assert str(Expr(Op.TERMS, {x: 2})) == "2 * x"
        assert str(Expr(Op.TERMS, {x: -1})) == "-x"
        assert str(Expr(Op.TERMS, {x: -2})) == "-2 * x"
        assert str(Expr(Op.TERMS, {x: 1, y: 1})) == "x + y"
        assert str(Expr(Op.TERMS, {x: -1, y: -1})) == "-x - y"
        assert str(Expr(Op.TERMS, {x: 2, y: 3})) == "2 * x + 3 * y"
        assert str(Expr(Op.TERMS, {x: -2, y: 3})) == "-2 * x + 3 * y"
        assert str(Expr(Op.TERMS, {x: 2, y: -3})) == "2 * x - 3 * y"

        assert str(Expr(Op.FACTORS, {x: 1})) == "x"
        assert str(Expr(Op.FACTORS, {x: 2})) == "x ** 2"
        assert str(Expr(Op.FACTORS, {x: -1})) == "x ** -1"
        assert str(Expr(Op.FACTORS, {x: -2})) == "x ** -2"
        assert str(Expr(Op.FACTORS, {x: 1, y: 1})) == "x * y"
        assert str(Expr(Op.FACTORS, {x: 2, y: 3})) == "x ** 2 * y ** 3"

        v = Expr(Op.FACTORS, {x: 2, Expr(Op.TERMS, {x: 1, y: 1}): 3})
        assert str(v) == "x ** 2 * (x + y) ** 3", str(v)
        v = Expr(Op.FACTORS, {x: 2, Expr(Op.FACTORS, {x: 1, y: 1}): 3})
        assert str(v) == "x ** 2 * (x * y) ** 3", str(v)

        assert str(Expr(Op.APPLY, ("f", (), {}))) == "f()"
        assert str(Expr(Op.APPLY, ("f", (x, ), {}))) == "f(x)"
        assert str(Expr(Op.APPLY, ("f", (x, y), {}))) == "f(x, y)"
        assert str(Expr(Op.INDEXING, ("f", x))) == "f[x]"

        assert str(as_ternary(x, y, z)) == "merge(y, z, x)"
        assert str(as_eq(x, y)) == "x .eq. y"
        assert str(as_ne(x, y)) == "x .ne. y"
        assert str(as_lt(x, y)) == "x .lt. y"
        assert str(as_le(x, y)) == "x .le. y"
        assert str(as_gt(x, y)) == "x .gt. y"
        assert str(as_ge(x, y)) == "x .ge. y"

    def test_tostring_c(self):
        language = Language.C
        x = as_symbol("x")
        y = as_symbol("y")
        z = as_symbol("z")
        n = as_number(123)

        assert Expr(Op.FACTORS, {x: 2}).tostring(language=language) == "x * x"
        assert (Expr(Op.FACTORS, {
            x + y: 2
        }).tostring(language=language) == "(x + y) * (x + y)")
        assert Expr(Op.FACTORS, {
            x: 12
        }).tostring(language=language) == "pow(x, 12)"

        assert as_apply(ArithOp.DIV, x,
                        y).tostring(language=language) == "x / y"
        assert (as_apply(ArithOp.DIV, x,
                         x + y).tostring(language=language) == "x / (x + y)")
        assert (as_apply(ArithOp.DIV, x - y, x +
                         y).tostring(language=language) == "(x - y) / (x + y)")
        assert (x + (x - y) / (x + y) +
                n).tostring(language=language) == "123 + x + (x - y) / (x + y)"

        assert as_ternary(x, y, z).tostring(language=language) == "(x?y:z)"
        assert as_eq(x, y).tostring(language=language) == "x == y"
        assert as_ne(x, y).tostring(language=language) == "x != y"
        assert as_lt(x, y).tostring(language=language) == "x < y"
        assert as_le(x, y).tostring(language=language) == "x <= y"
        assert as_gt(x, y).tostring(language=language) == "x > y"
        assert as_ge(x, y).tostring(language=language) == "x >= y"

    def test_operations(self):
        x = as_symbol("x")
        y = as_symbol("y")
        z = as_symbol("z")

        assert x + x == Expr(Op.TERMS, {x: 2})
        assert x - x == Expr(Op.INTEGER, (0, 4))
        assert x + y == Expr(Op.TERMS, {x: 1, y: 1})
        assert x - y == Expr(Op.TERMS, {x: 1, y: -1})
        assert x * x == Expr(Op.FACTORS, {x: 2})
        assert x * y == Expr(Op.FACTORS, {x: 1, y: 1})

        assert +x == x
        assert -x == Expr(Op.TERMS, {x: -1}), repr(-x)
        assert 2 * x == Expr(Op.TERMS, {x: 2})
        assert 2 + x == Expr(Op.TERMS, {x: 1, as_number(1): 2})
        assert 2 * x + 3 * y == Expr(Op.TERMS, {x: 2, y: 3})
        assert (x + y) * 2 == Expr(Op.TERMS, {x: 2, y: 2})

        assert x**2 == Expr(Op.FACTORS, {x: 2})
        assert (x + y)**2 == Expr(
            Op.TERMS,
            {
                Expr(Op.FACTORS, {x: 2}): 1,
                Expr(Op.FACTORS, {y: 2}): 1,
                Expr(Op.FACTORS, {
                    x: 1,
                    y: 1
                }): 2,
            },
        )
        assert (x + y) * x == x**2 + x * y
        assert (x + y)**2 == x**2 + 2 * x * y + y**2
        assert (x + y)**2 + (x - y)**2 == 2 * x**2 + 2 * y**2
        assert (x + y) * z == x * z + y * z
        assert z * (x + y) == x * z + y * z

        assert (x / 2) == as_apply(ArithOp.DIV, x, as_number(2))
        assert (2 * x / 2) == x
        assert (3 * x / 2) == as_apply(ArithOp.DIV, 3 * x, as_number(2))
        assert (4 * x / 2) == 2 * x
        assert (5 * x / 2) == as_apply(ArithOp.DIV, 5 * x, as_number(2))
        assert (6 * x / 2) == 3 * x
        assert ((3 * 5) * x / 6) == as_apply(ArithOp.DIV, 5 * x, as_number(2))
        assert (30 * x**2 * y**4 / (24 * x**3 * y**3)) == as_apply(
            ArithOp.DIV, 5 * y, 4 * x)
        assert ((15 * x / 6) / 5) == as_apply(ArithOp.DIV, x,
                                              as_number(2)), (15 * x / 6) / 5
        assert (x / (5 / x)) == as_apply(ArithOp.DIV, x**2, as_number(5))

        assert (x / 2.0) == Expr(Op.TERMS, {x: 0.5})

        s = as_string('"ABC"')
        t = as_string('"123"')

        assert s // t == Expr(Op.STRING, ('"ABC123"', 1))
        assert s // x == Expr(Op.CONCAT, (s, x))
        assert x // s == Expr(Op.CONCAT, (x, s))

        c = as_complex(1.0, 2.0)
        assert -c == as_complex(-1.0, -2.0)
        assert c + c == as_expr((1 + 2j) * 2)
        assert c * c == as_expr((1 + 2j)**2)

    def test_substitute(self):
        x = as_symbol("x")
        y = as_symbol("y")
        z = as_symbol("z")
        a = as_array((x, y))

        assert x.substitute({x: y}) == y
        assert (x + y).substitute({x: z}) == y + z
        assert (x * y).substitute({x: z}) == y * z
        assert (x**4).substitute({x: z}) == z**4
        assert (x / y).substitute({x: z}) == z / y
        assert x.substitute({x: y + z}) == y + z
        assert a.substitute({x: y + z}) == as_array((y + z, y))

        assert as_ternary(x, y,
                          z).substitute({x: y + z}) == as_ternary(y + z, y, z)
        assert as_eq(x, y).substitute({x: y + z}) == as_eq(y + z, y)

    def test_fromstring(self):

        x = as_symbol("x")
        y = as_symbol("y")
        z = as_symbol("z")
        f = as_symbol("f")
        s = as_string('"ABC"')
        t = as_string('"123"')
        a = as_array((x, y))

        assert fromstring("x") == x
        assert fromstring("+ x") == x
        assert fromstring("-  x") == -x
        assert fromstring("x + y") == x + y
        assert fromstring("x + 1") == x + 1
        assert fromstring("x * y") == x * y
        assert fromstring("x * 2") == x * 2
        assert fromstring("x / y") == x / y
        assert fromstring("x ** 2", language=Language.Python) == x**2
        assert fromstring("x ** 2 ** 3", language=Language.Python) == x**2**3
        assert fromstring("(x + y) * z") == (x + y) * z

        assert fromstring("f(x)") == f(x)
        assert fromstring("f(x,y)") == f(x, y)
        assert fromstring("f[x]") == f[x]
        assert fromstring("f[x][y]") == f[x][y]

        assert fromstring('"ABC"') == s
        assert (normalize(
            fromstring('"ABC" // "123" ',
                       language=Language.Fortran)) == s // t)
        assert fromstring('f("ABC")') == f(s)
        assert fromstring('MYSTRKIND_"ABC"') == as_string('"ABC"', "MYSTRKIND")

        assert fromstring("(/x, y/)") == a, fromstring("(/x, y/)")
        assert fromstring("f((/x, y/))") == f(a)
        assert fromstring("(/(x+y)*z/)") == as_array(((x + y) * z, ))

        assert fromstring("123") == as_number(123)
        assert fromstring("123_2") == as_number(123, 2)
        assert fromstring("123_myintkind") == as_number(123, "myintkind")

        assert fromstring("123.0") == as_number(123.0, 4)
        assert fromstring("123.0_4") == as_number(123.0, 4)
        assert fromstring("123.0_8") == as_number(123.0, 8)
        assert fromstring("123.0e0") == as_number(123.0, 4)
        assert fromstring("123.0d0") == as_number(123.0, 8)
        assert fromstring("123d0") == as_number(123.0, 8)
        assert fromstring("123e-0") == as_number(123.0, 4)
        assert fromstring("123d+0") == as_number(123.0, 8)
        assert fromstring("123.0_myrealkind") == as_number(123.0, "myrealkind")
        assert fromstring("3E4") == as_number(30000.0, 4)

        assert fromstring("(1, 2)") == as_complex(1, 2)
        assert fromstring("(1e2, PI)") == as_complex(as_number(100.0),
                                                     as_symbol("PI"))

        assert fromstring("[1, 2]") == as_array((as_number(1), as_number(2)))

        assert fromstring("POINT(x, y=1)") == as_apply(as_symbol("POINT"),
                                                       x,
                                                       y=as_number(1))
        assert fromstring(
            'PERSON(name="John", age=50, shape=(/34, 23/))') == as_apply(
                as_symbol("PERSON"),
                name=as_string('"John"'),
                age=as_number(50),
                shape=as_array((as_number(34), as_number(23))),
            )

        assert fromstring("x?y:z") == as_ternary(x, y, z)

        assert fromstring("*x") == as_deref(x)
        assert fromstring("**x") == as_deref(as_deref(x))
        assert fromstring("&x") == as_ref(x)
        assert fromstring("(*x) * (*y)") == as_deref(x) * as_deref(y)
        assert fromstring("(*x) * *y") == as_deref(x) * as_deref(y)
        assert fromstring("*x * *y") == as_deref(x) * as_deref(y)
        assert fromstring("*x**y") == as_deref(x) * as_deref(y)

        assert fromstring("x == y") == as_eq(x, y)
        assert fromstring("x != y") == as_ne(x, y)
        assert fromstring("x < y") == as_lt(x, y)
        assert fromstring("x > y") == as_gt(x, y)
        assert fromstring("x <= y") == as_le(x, y)
        assert fromstring("x >= y") == as_ge(x, y)

        assert fromstring("x .eq. y", language=Language.Fortran) == as_eq(x, y)
        assert fromstring("x .ne. y", language=Language.Fortran) == as_ne(x, y)
        assert fromstring("x .lt. y", language=Language.Fortran) == as_lt(x, y)
        assert fromstring("x .gt. y", language=Language.Fortran) == as_gt(x, y)
        assert fromstring("x .le. y", language=Language.Fortran) == as_le(x, y)
        assert fromstring("x .ge. y", language=Language.Fortran) == as_ge(x, y)

    def test_traverse(self):
        x = as_symbol("x")
        y = as_symbol("y")
        z = as_symbol("z")
        f = as_symbol("f")

        # Use traverse to substitute a symbol
        def replace_visit(s, r=z):
            if s == x:
                return r

        assert x.traverse(replace_visit) == z
        assert y.traverse(replace_visit) == y
        assert z.traverse(replace_visit) == z
        assert (f(y)).traverse(replace_visit) == f(y)
        assert (f(x)).traverse(replace_visit) == f(z)
        assert (f[y]).traverse(replace_visit) == f[y]
        assert (f[z]).traverse(replace_visit) == f[z]
        assert (x + y + z).traverse(replace_visit) == (2 * z + y)
        assert (x +
                f(y, x - z)).traverse(replace_visit) == (z +
                                                         f(y, as_number(0)))
        assert as_eq(x, y).traverse(replace_visit) == as_eq(z, y)

        # Use traverse to collect symbols, method 1
        function_symbols = set()
        symbols = set()

        def collect_symbols(s):
            if s.op is Op.APPLY:
                oper = s.data[0]
                function_symbols.add(oper)
                if oper in symbols:
                    symbols.remove(oper)
            elif s.op is Op.SYMBOL and s not in function_symbols:
                symbols.add(s)

        (x + f(y, x - z)).traverse(collect_symbols)
        assert function_symbols == {f}
        assert symbols == {x, y, z}

        # Use traverse to collect symbols, method 2
        def collect_symbols2(expr, symbols):
            if expr.op is Op.SYMBOL:
                symbols.add(expr)

        symbols = set()
        (x + f(y, x - z)).traverse(collect_symbols2, symbols)
        assert symbols == {x, y, z, f}

        # Use traverse to partially collect symbols
        def collect_symbols3(expr, symbols):
            if expr.op is Op.APPLY:
                # skip traversing function calls
                return expr
            if expr.op is Op.SYMBOL:
                symbols.add(expr)

        symbols = set()
        (x + f(y, x - z)).traverse(collect_symbols3, symbols)
        assert symbols == {x}

    def test_linear_solve(self):
        x = as_symbol("x")
        y = as_symbol("y")
        z = as_symbol("z")

        assert x.linear_solve(x) == (as_number(1), as_number(0))
        assert (x + 1).linear_solve(x) == (as_number(1), as_number(1))
        assert (2 * x).linear_solve(x) == (as_number(2), as_number(0))
        assert (2 * x + 3).linear_solve(x) == (as_number(2), as_number(3))
        assert as_number(3).linear_solve(x) == (as_number(0), as_number(3))
        assert y.linear_solve(x) == (as_number(0), y)
        assert (y * z).linear_solve(x) == (as_number(0), y * z)

        assert (x + y).linear_solve(x) == (as_number(1), y)
        assert (z * x + y).linear_solve(x) == (z, y)
        assert ((z + y) * x + y).linear_solve(x) == (z + y, y)
        assert (z * y * x + y).linear_solve(x) == (z * y, y)

        pytest.raises(RuntimeError, lambda: (x * x).linear_solve(x))

    def test_as_numer_denom(self):
        x = as_symbol("x")
        y = as_symbol("y")
        n = as_number(123)

        assert as_numer_denom(x) == (x, as_number(1))
        assert as_numer_denom(x / n) == (x, n)
        assert as_numer_denom(n / x) == (n, x)
        assert as_numer_denom(x / y) == (x, y)
        assert as_numer_denom(x * y) == (x * y, as_number(1))
        assert as_numer_denom(n + x / y) == (x + n * y, y)
        assert as_numer_denom(n + x / (y - x / n)) == (y * n**2, y * n - x)

    def test_polynomial_atoms(self):
        x = as_symbol("x")
        y = as_symbol("y")
        n = as_number(123)

        assert x.polynomial_atoms() == {x}
        assert n.polynomial_atoms() == set()
        assert (y[x]).polynomial_atoms() == {y[x]}
        assert (y(x)).polynomial_atoms() == {y(x)}
        assert (y(x) + x).polynomial_atoms() == {y(x), x}
        assert (y(x) * x[y]).polynomial_atoms() == {y(x), x[y]}
        assert (y(x)**x).polynomial_atoms() == {y(x)}