PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/random/tests/
Upload File :
Current File : //proc/self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/random/tests/test_random.py
import warnings

import pytest

import numpy as np
from numpy.testing import (
        assert_, assert_raises, assert_equal, assert_warns,
        assert_no_warnings, assert_array_equal, assert_array_almost_equal,
        suppress_warnings, IS_WASM
        )
from numpy import random
import sys


class TestSeed:
    def test_scalar(self):
        s = np.random.RandomState(0)
        assert_equal(s.randint(1000), 684)
        s = np.random.RandomState(4294967295)
        assert_equal(s.randint(1000), 419)

    def test_array(self):
        s = np.random.RandomState(range(10))
        assert_equal(s.randint(1000), 468)
        s = np.random.RandomState(np.arange(10))
        assert_equal(s.randint(1000), 468)
        s = np.random.RandomState([0])
        assert_equal(s.randint(1000), 973)
        s = np.random.RandomState([4294967295])
        assert_equal(s.randint(1000), 265)

    def test_invalid_scalar(self):
        # seed must be an unsigned 32 bit integer
        assert_raises(TypeError, np.random.RandomState, -0.5)
        assert_raises(ValueError, np.random.RandomState, -1)

    def test_invalid_array(self):
        # seed must be an unsigned 32 bit integer
        assert_raises(TypeError, np.random.RandomState, [-0.5])
        assert_raises(ValueError, np.random.RandomState, [-1])
        assert_raises(ValueError, np.random.RandomState, [4294967296])
        assert_raises(ValueError, np.random.RandomState, [1, 2, 4294967296])
        assert_raises(ValueError, np.random.RandomState, [1, -2, 4294967296])

    def test_invalid_array_shape(self):
        # gh-9832
        assert_raises(ValueError, np.random.RandomState,
                      np.array([], dtype=np.int64))
        assert_raises(ValueError, np.random.RandomState, [[1, 2, 3]])
        assert_raises(ValueError, np.random.RandomState, [[1, 2, 3],
                                                          [4, 5, 6]])


class TestBinomial:
    def test_n_zero(self):
        # Tests the corner case of n == 0 for the binomial distribution.
        # binomial(0, p) should be zero for any p in [0, 1].
        # This test addresses issue #3480.
        zeros = np.zeros(2, dtype='int')
        for p in [0, .5, 1]:
            assert_(random.binomial(0, p) == 0)
            assert_array_equal(random.binomial(zeros, p), zeros)

    def test_p_is_nan(self):
        # Issue #4571.
        assert_raises(ValueError, random.binomial, 1, np.nan)


class TestMultinomial:
    def test_basic(self):
        random.multinomial(100, [0.2, 0.8])

    def test_zero_probability(self):
        random.multinomial(100, [0.2, 0.8, 0.0, 0.0, 0.0])

    def test_int_negative_interval(self):
        assert_(-5 <= random.randint(-5, -1) < -1)
        x = random.randint(-5, -1, 5)
        assert_(np.all(-5 <= x))
        assert_(np.all(x < -1))

    def test_size(self):
        # gh-3173
        p = [0.5, 0.5]
        assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
        assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
        assert_equal(np.random.multinomial(1, p, np.uint32(1)).shape, (1, 2))
        assert_equal(np.random.multinomial(1, p, [2, 2]).shape, (2, 2, 2))
        assert_equal(np.random.multinomial(1, p, (2, 2)).shape, (2, 2, 2))
        assert_equal(np.random.multinomial(1, p, np.array((2, 2))).shape,
                     (2, 2, 2))

        assert_raises(TypeError, np.random.multinomial, 1, p,
                      float(1))

    def test_multidimensional_pvals(self):
        assert_raises(ValueError, np.random.multinomial, 10, [[0, 1]])
        assert_raises(ValueError, np.random.multinomial, 10, [[0], [1]])
        assert_raises(ValueError, np.random.multinomial, 10, [[[0], [1]], [[1], [0]]])
        assert_raises(ValueError, np.random.multinomial, 10, np.array([[0, 1], [1, 0]]))


class TestSetState:
    def setup_method(self):
        self.seed = 1234567890
        self.prng = random.RandomState(self.seed)
        self.state = self.prng.get_state()

    def test_basic(self):
        old = self.prng.tomaxint(16)
        self.prng.set_state(self.state)
        new = self.prng.tomaxint(16)
        assert_(np.all(old == new))

    def test_gaussian_reset(self):
        # Make sure the cached every-other-Gaussian is reset.
        old = self.prng.standard_normal(size=3)
        self.prng.set_state(self.state)
        new = self.prng.standard_normal(size=3)
        assert_(np.all(old == new))

    def test_gaussian_reset_in_media_res(self):
        # When the state is saved with a cached Gaussian, make sure the
        # cached Gaussian is restored.

        self.prng.standard_normal()
        state = self.prng.get_state()
        old = self.prng.standard_normal(size=3)
        self.prng.set_state(state)
        new = self.prng.standard_normal(size=3)
        assert_(np.all(old == new))

    def test_backwards_compatibility(self):
        # Make sure we can accept old state tuples that do not have the
        # cached Gaussian value.
        old_state = self.state[:-2]
        x1 = self.prng.standard_normal(size=16)
        self.prng.set_state(old_state)
        x2 = self.prng.standard_normal(size=16)
        self.prng.set_state(self.state)
        x3 = self.prng.standard_normal(size=16)
        assert_(np.all(x1 == x2))
        assert_(np.all(x1 == x3))

    def test_negative_binomial(self):
        # Ensure that the negative binomial results take floating point
        # arguments without truncation.
        self.prng.negative_binomial(0.5, 0.5)


class TestRandint:

    rfunc = np.random.randint

    # valid integer/boolean types
    itype = [np.bool_, np.int8, np.uint8, np.int16, np.uint16,
             np.int32, np.uint32, np.int64, np.uint64]

    def test_unsupported_type(self):
        assert_raises(TypeError, self.rfunc, 1, dtype=float)

    def test_bounds_checking(self):
        for dt in self.itype:
            lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
            ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1
            assert_raises(ValueError, self.rfunc, lbnd - 1, ubnd, dtype=dt)
            assert_raises(ValueError, self.rfunc, lbnd, ubnd + 1, dtype=dt)
            assert_raises(ValueError, self.rfunc, ubnd, lbnd, dtype=dt)
            assert_raises(ValueError, self.rfunc, 1, 0, dtype=dt)

    def test_rng_zero_and_extremes(self):
        for dt in self.itype:
            lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
            ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1

            tgt = ubnd - 1
            assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)

            tgt = lbnd
            assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)

            tgt = (lbnd + ubnd)//2
            assert_equal(self.rfunc(tgt, tgt + 1, size=1000, dtype=dt), tgt)

    def test_full_range(self):
        # Test for ticket #1690

        for dt in self.itype:
            lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
            ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1

            try:
                self.rfunc(lbnd, ubnd, dtype=dt)
            except Exception as e:
                raise AssertionError("No error should have been raised, "
                                     "but one was with the following "
                                     "message:\n\n%s" % str(e))

    def test_in_bounds_fuzz(self):
        # Don't use fixed seed
        np.random.seed()

        for dt in self.itype[1:]:
            for ubnd in [4, 8, 16]:
                vals = self.rfunc(2, ubnd, size=2**16, dtype=dt)
                assert_(vals.max() < ubnd)
                assert_(vals.min() >= 2)

        vals = self.rfunc(0, 2, size=2**16, dtype=np.bool_)

        assert_(vals.max() < 2)
        assert_(vals.min() >= 0)

    def test_repeatability(self):
        import hashlib
        # We use a sha256 hash of generated sequences of 1000 samples
        # in the range [0, 6) for all but bool, where the range
        # is [0, 2). Hashes are for little endian numbers.
        tgt = {'bool': '509aea74d792fb931784c4b0135392c65aec64beee12b0cc167548a2c3d31e71',
               'int16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4',
               'int32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f',
               'int64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e',
               'int8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404',
               'uint16': '7b07f1a920e46f6d0fe02314155a2330bcfd7635e708da50e536c5ebb631a7d4',
               'uint32': 'e577bfed6c935de944424667e3da285012e741892dcb7051a8f1ce68ab05c92f',
               'uint64': '0fbead0b06759df2cfb55e43148822d4a1ff953c7eb19a5b08445a63bb64fa9e',
               'uint8': '001aac3a5acb935a9b186cbe14a1ca064b8bb2dd0b045d48abeacf74d0203404'}

        for dt in self.itype[1:]:
            np.random.seed(1234)

            # view as little endian for hash
            if sys.byteorder == 'little':
                val = self.rfunc(0, 6, size=1000, dtype=dt)
            else:
                val = self.rfunc(0, 6, size=1000, dtype=dt).byteswap()

            res = hashlib.sha256(val.view(np.int8)).hexdigest()
            assert_(tgt[np.dtype(dt).name] == res)

        # bools do not depend on endianness
        np.random.seed(1234)
        val = self.rfunc(0, 2, size=1000, dtype=bool).view(np.int8)
        res = hashlib.sha256(val).hexdigest()
        assert_(tgt[np.dtype(bool).name] == res)

    def test_int64_uint64_corner_case(self):
        # When stored in Numpy arrays, `lbnd` is casted
        # as np.int64, and `ubnd` is casted as np.uint64.
        # Checking whether `lbnd` >= `ubnd` used to be
        # done solely via direct comparison, which is incorrect
        # because when Numpy tries to compare both numbers,
        # it casts both to np.float64 because there is
        # no integer superset of np.int64 and np.uint64. However,
        # `ubnd` is too large to be represented in np.float64,
        # causing it be round down to np.iinfo(np.int64).max,
        # leading to a ValueError because `lbnd` now equals
        # the new `ubnd`.

        dt = np.int64
        tgt = np.iinfo(np.int64).max
        lbnd = np.int64(np.iinfo(np.int64).max)
        ubnd = np.uint64(np.iinfo(np.int64).max + 1)

        # None of these function calls should
        # generate a ValueError now.
        actual = np.random.randint(lbnd, ubnd, dtype=dt)
        assert_equal(actual, tgt)

    def test_respect_dtype_singleton(self):
        # See gh-7203
        for dt in self.itype:
            lbnd = 0 if dt is np.bool_ else np.iinfo(dt).min
            ubnd = 2 if dt is np.bool_ else np.iinfo(dt).max + 1

            sample = self.rfunc(lbnd, ubnd, dtype=dt)
            assert_equal(sample.dtype, np.dtype(dt))

        for dt in (bool, int, np.compat.long):
            lbnd = 0 if dt is bool else np.iinfo(dt).min
            ubnd = 2 if dt is bool else np.iinfo(dt).max + 1

            # gh-7284: Ensure that we get Python data types
            sample = self.rfunc(lbnd, ubnd, dtype=dt)
            assert_(not hasattr(sample, 'dtype'))
            assert_equal(type(sample), dt)


class TestRandomDist:
    # Make sure the random distribution returns the correct value for a
    # given seed

    def setup_method(self):
        self.seed = 1234567890

    def test_rand(self):
        np.random.seed(self.seed)
        actual = np.random.rand(3, 2)
        desired = np.array([[0.61879477158567997, 0.59162362775974664],
                            [0.88868358904449662, 0.89165480011560816],
                            [0.4575674820298663, 0.7781880808593471]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_randn(self):
        np.random.seed(self.seed)
        actual = np.random.randn(3, 2)
        desired = np.array([[1.34016345771863121, 1.73759122771936081],
                           [1.498988344300628, -0.2286433324536169],
                           [2.031033998682787, 2.17032494605655257]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_randint(self):
        np.random.seed(self.seed)
        actual = np.random.randint(-99, 99, size=(3, 2))
        desired = np.array([[31, 3],
                            [-52, 41],
                            [-48, -66]])
        assert_array_equal(actual, desired)

    def test_random_integers(self):
        np.random.seed(self.seed)
        with suppress_warnings() as sup:
            w = sup.record(DeprecationWarning)
            actual = np.random.random_integers(-99, 99, size=(3, 2))
            assert_(len(w) == 1)
        desired = np.array([[31, 3],
                            [-52, 41],
                            [-48, -66]])
        assert_array_equal(actual, desired)

    def test_random_integers_max_int(self):
        # Tests whether random_integers can generate the
        # maximum allowed Python int that can be converted
        # into a C long. Previous implementations of this
        # method have thrown an OverflowError when attempting
        # to generate this integer.
        with suppress_warnings() as sup:
            w = sup.record(DeprecationWarning)
            actual = np.random.random_integers(np.iinfo('l').max,
                                               np.iinfo('l').max)
            assert_(len(w) == 1)

        desired = np.iinfo('l').max
        assert_equal(actual, desired)

    def test_random_integers_deprecated(self):
        with warnings.catch_warnings():
            warnings.simplefilter("error", DeprecationWarning)

            # DeprecationWarning raised with high == None
            assert_raises(DeprecationWarning,
                          np.random.random_integers,
                          np.iinfo('l').max)

            # DeprecationWarning raised with high != None
            assert_raises(DeprecationWarning,
                          np.random.random_integers,
                          np.iinfo('l').max, np.iinfo('l').max)

    def test_random(self):
        np.random.seed(self.seed)
        actual = np.random.random((3, 2))
        desired = np.array([[0.61879477158567997, 0.59162362775974664],
                            [0.88868358904449662, 0.89165480011560816],
                            [0.4575674820298663, 0.7781880808593471]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_choice_uniform_replace(self):
        np.random.seed(self.seed)
        actual = np.random.choice(4, 4)
        desired = np.array([2, 3, 2, 3])
        assert_array_equal(actual, desired)

    def test_choice_nonuniform_replace(self):
        np.random.seed(self.seed)
        actual = np.random.choice(4, 4, p=[0.4, 0.4, 0.1, 0.1])
        desired = np.array([1, 1, 2, 2])
        assert_array_equal(actual, desired)

    def test_choice_uniform_noreplace(self):
        np.random.seed(self.seed)
        actual = np.random.choice(4, 3, replace=False)
        desired = np.array([0, 1, 3])
        assert_array_equal(actual, desired)

    def test_choice_nonuniform_noreplace(self):
        np.random.seed(self.seed)
        actual = np.random.choice(4, 3, replace=False,
                                  p=[0.1, 0.3, 0.5, 0.1])
        desired = np.array([2, 3, 1])
        assert_array_equal(actual, desired)

    def test_choice_noninteger(self):
        np.random.seed(self.seed)
        actual = np.random.choice(['a', 'b', 'c', 'd'], 4)
        desired = np.array(['c', 'd', 'c', 'd'])
        assert_array_equal(actual, desired)

    def test_choice_exceptions(self):
        sample = np.random.choice
        assert_raises(ValueError, sample, -1, 3)
        assert_raises(ValueError, sample, 3., 3)
        assert_raises(ValueError, sample, [[1, 2], [3, 4]], 3)
        assert_raises(ValueError, sample, [], 3)
        assert_raises(ValueError, sample, [1, 2, 3, 4], 3,
                      p=[[0.25, 0.25], [0.25, 0.25]])
        assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4, 0.2])
        assert_raises(ValueError, sample, [1, 2], 3, p=[1.1, -0.1])
        assert_raises(ValueError, sample, [1, 2], 3, p=[0.4, 0.4])
        assert_raises(ValueError, sample, [1, 2, 3], 4, replace=False)
        # gh-13087
        assert_raises(ValueError, sample, [1, 2, 3], -2, replace=False)
        assert_raises(ValueError, sample, [1, 2, 3], (-1,), replace=False)
        assert_raises(ValueError, sample, [1, 2, 3], (-1, 1), replace=False)
        assert_raises(ValueError, sample, [1, 2, 3], 2,
                      replace=False, p=[1, 0, 0])

    def test_choice_return_shape(self):
        p = [0.1, 0.9]
        # Check scalar
        assert_(np.isscalar(np.random.choice(2, replace=True)))
        assert_(np.isscalar(np.random.choice(2, replace=False)))
        assert_(np.isscalar(np.random.choice(2, replace=True, p=p)))
        assert_(np.isscalar(np.random.choice(2, replace=False, p=p)))
        assert_(np.isscalar(np.random.choice([1, 2], replace=True)))
        assert_(np.random.choice([None], replace=True) is None)
        a = np.array([1, 2])
        arr = np.empty(1, dtype=object)
        arr[0] = a
        assert_(np.random.choice(arr, replace=True) is a)

        # Check 0-d array
        s = tuple()
        assert_(not np.isscalar(np.random.choice(2, s, replace=True)))
        assert_(not np.isscalar(np.random.choice(2, s, replace=False)))
        assert_(not np.isscalar(np.random.choice(2, s, replace=True, p=p)))
        assert_(not np.isscalar(np.random.choice(2, s, replace=False, p=p)))
        assert_(not np.isscalar(np.random.choice([1, 2], s, replace=True)))
        assert_(np.random.choice([None], s, replace=True).ndim == 0)
        a = np.array([1, 2])
        arr = np.empty(1, dtype=object)
        arr[0] = a
        assert_(np.random.choice(arr, s, replace=True).item() is a)

        # Check multi dimensional array
        s = (2, 3)
        p = [0.1, 0.1, 0.1, 0.1, 0.4, 0.2]
        assert_equal(np.random.choice(6, s, replace=True).shape, s)
        assert_equal(np.random.choice(6, s, replace=False).shape, s)
        assert_equal(np.random.choice(6, s, replace=True, p=p).shape, s)
        assert_equal(np.random.choice(6, s, replace=False, p=p).shape, s)
        assert_equal(np.random.choice(np.arange(6), s, replace=True).shape, s)

        # Check zero-size
        assert_equal(np.random.randint(0, 0, size=(3, 0, 4)).shape, (3, 0, 4))
        assert_equal(np.random.randint(0, -10, size=0).shape, (0,))
        assert_equal(np.random.randint(10, 10, size=0).shape, (0,))
        assert_equal(np.random.choice(0, size=0).shape, (0,))
        assert_equal(np.random.choice([], size=(0,)).shape, (0,))
        assert_equal(np.random.choice(['a', 'b'], size=(3, 0, 4)).shape,
                     (3, 0, 4))
        assert_raises(ValueError, np.random.choice, [], 10)

    def test_choice_nan_probabilities(self):
        a = np.array([42, 1, 2])
        p = [None, None, None]
        assert_raises(ValueError, np.random.choice, a, p=p)

    def test_bytes(self):
        np.random.seed(self.seed)
        actual = np.random.bytes(10)
        desired = b'\x82Ui\x9e\xff\x97+Wf\xa5'
        assert_equal(actual, desired)

    def test_shuffle(self):
        # Test lists, arrays (of various dtypes), and multidimensional versions
        # of both, c-contiguous or not:
        for conv in [lambda x: np.array([]),
                     lambda x: x,
                     lambda x: np.asarray(x).astype(np.int8),
                     lambda x: np.asarray(x).astype(np.float32),
                     lambda x: np.asarray(x).astype(np.complex64),
                     lambda x: np.asarray(x).astype(object),
                     lambda x: [(i, i) for i in x],
                     lambda x: np.asarray([[i, i] for i in x]),
                     lambda x: np.vstack([x, x]).T,
                     # gh-11442
                     lambda x: (np.asarray([(i, i) for i in x],
                                           [("a", int), ("b", int)])
                                .view(np.recarray)),
                     # gh-4270
                     lambda x: np.asarray([(i, i) for i in x],
                                          [("a", object), ("b", np.int32)])]:
            np.random.seed(self.seed)
            alist = conv([1, 2, 3, 4, 5, 6, 7, 8, 9, 0])
            np.random.shuffle(alist)
            actual = alist
            desired = conv([0, 1, 9, 6, 2, 4, 5, 8, 7, 3])
            assert_array_equal(actual, desired)

    def test_shuffle_masked(self):
        # gh-3263
        a = np.ma.masked_values(np.reshape(range(20), (5, 4)) % 3 - 1, -1)
        b = np.ma.masked_values(np.arange(20) % 3 - 1, -1)
        a_orig = a.copy()
        b_orig = b.copy()
        for i in range(50):
            np.random.shuffle(a)
            assert_equal(
                sorted(a.data[~a.mask]), sorted(a_orig.data[~a_orig.mask]))
            np.random.shuffle(b)
            assert_equal(
                sorted(b.data[~b.mask]), sorted(b_orig.data[~b_orig.mask]))

    @pytest.mark.parametrize("random",
            [np.random, np.random.RandomState(), np.random.default_rng()])
    def test_shuffle_untyped_warning(self, random):
        # Create a dict works like a sequence but isn't one
        values = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6}
        with pytest.warns(UserWarning,
                match="you are shuffling a 'dict' object") as rec:
            random.shuffle(values)
        assert "test_random" in rec[0].filename

    @pytest.mark.parametrize("random",
        [np.random, np.random.RandomState(), np.random.default_rng()])
    @pytest.mark.parametrize("use_array_like", [True, False])
    def test_shuffle_no_object_unpacking(self, random, use_array_like):
        class MyArr(np.ndarray):
            pass

        items = [
            None, np.array([3]), np.float64(3), np.array(10), np.float64(7)
        ]
        arr = np.array(items, dtype=object)
        item_ids = {id(i) for i in items}
        if use_array_like:
            arr = arr.view(MyArr)

        # The array was created fine, and did not modify any objects:
        assert all(id(i) in item_ids for i in arr)

        if use_array_like and not isinstance(random, np.random.Generator):
            # The old API gives incorrect results, but warns about it.
            with pytest.warns(UserWarning,
                    match="Shuffling a one dimensional array.*"):
                random.shuffle(arr)
        else:
            random.shuffle(arr)
            assert all(id(i) in item_ids for i in arr)

    def test_shuffle_memoryview(self):
        # gh-18273
        # allow graceful handling of memoryviews
        # (treat the same as arrays)
        np.random.seed(self.seed)
        a = np.arange(5).data
        np.random.shuffle(a)
        assert_equal(np.asarray(a), [0, 1, 4, 3, 2])
        rng = np.random.RandomState(self.seed)
        rng.shuffle(a)
        assert_equal(np.asarray(a), [0, 1, 2, 3, 4])
        rng = np.random.default_rng(self.seed)
        rng.shuffle(a)
        assert_equal(np.asarray(a), [4, 1, 0, 3, 2])

    def test_shuffle_not_writeable(self):
        a = np.zeros(3)
        a.flags.writeable = False
        with pytest.raises(ValueError, match='read-only'):
            np.random.shuffle(a)

    def test_beta(self):
        np.random.seed(self.seed)
        actual = np.random.beta(.1, .9, size=(3, 2))
        desired = np.array(
                [[1.45341850513746058e-02, 5.31297615662868145e-04],
                 [1.85366619058432324e-06, 4.19214516800110563e-03],
                 [1.58405155108498093e-04, 1.26252891949397652e-04]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_binomial(self):
        np.random.seed(self.seed)
        actual = np.random.binomial(100, .456, size=(3, 2))
        desired = np.array([[37, 43],
                            [42, 48],
                            [46, 45]])
        assert_array_equal(actual, desired)

    def test_chisquare(self):
        np.random.seed(self.seed)
        actual = np.random.chisquare(50, size=(3, 2))
        desired = np.array([[63.87858175501090585, 68.68407748911370447],
                            [65.77116116901505904, 47.09686762438974483],
                            [72.3828403199695174, 74.18408615260374006]])
        assert_array_almost_equal(actual, desired, decimal=13)

    def test_dirichlet(self):
        np.random.seed(self.seed)
        alpha = np.array([51.72840233779265162, 39.74494232180943953])
        actual = np.random.mtrand.dirichlet(alpha, size=(3, 2))
        desired = np.array([[[0.54539444573611562, 0.45460555426388438],
                             [0.62345816822039413, 0.37654183177960598]],
                            [[0.55206000085785778, 0.44793999914214233],
                             [0.58964023305154301, 0.41035976694845688]],
                            [[0.59266909280647828, 0.40733090719352177],
                             [0.56974431743975207, 0.43025568256024799]]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_dirichlet_size(self):
        # gh-3173
        p = np.array([51.72840233779265162, 39.74494232180943953])
        assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
        assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
        assert_equal(np.random.dirichlet(p, np.uint32(1)).shape, (1, 2))
        assert_equal(np.random.dirichlet(p, [2, 2]).shape, (2, 2, 2))
        assert_equal(np.random.dirichlet(p, (2, 2)).shape, (2, 2, 2))
        assert_equal(np.random.dirichlet(p, np.array((2, 2))).shape, (2, 2, 2))

        assert_raises(TypeError, np.random.dirichlet, p, float(1))

    def test_dirichlet_bad_alpha(self):
        # gh-2089
        alpha = np.array([5.4e-01, -1.0e-16])
        assert_raises(ValueError, np.random.mtrand.dirichlet, alpha)

        # gh-15876
        assert_raises(ValueError, random.dirichlet, [[5, 1]])
        assert_raises(ValueError, random.dirichlet, [[5], [1]])
        assert_raises(ValueError, random.dirichlet, [[[5], [1]], [[1], [5]]])
        assert_raises(ValueError, random.dirichlet, np.array([[5, 1], [1, 5]]))

    def test_exponential(self):
        np.random.seed(self.seed)
        actual = np.random.exponential(1.1234, size=(3, 2))
        desired = np.array([[1.08342649775011624, 1.00607889924557314],
                            [2.46628830085216721, 2.49668106809923884],
                            [0.68717433461363442, 1.69175666993575979]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_exponential_0(self):
        assert_equal(np.random.exponential(scale=0), 0)
        assert_raises(ValueError, np.random.exponential, scale=-0.)

    def test_f(self):
        np.random.seed(self.seed)
        actual = np.random.f(12, 77, size=(3, 2))
        desired = np.array([[1.21975394418575878, 1.75135759791559775],
                            [1.44803115017146489, 1.22108959480396262],
                            [1.02176975757740629, 1.34431827623300415]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_gamma(self):
        np.random.seed(self.seed)
        actual = np.random.gamma(5, 3, size=(3, 2))
        desired = np.array([[24.60509188649287182, 28.54993563207210627],
                            [26.13476110204064184, 12.56988482927716078],
                            [31.71863275789960568, 33.30143302795922011]])
        assert_array_almost_equal(actual, desired, decimal=14)

    def test_gamma_0(self):
        assert_equal(np.random.gamma(shape=0, scale=0), 0)
        assert_raises(ValueError, np.random.gamma, shape=-0., scale=-0.)

    def test_geometric(self):
        np.random.seed(self.seed)
        actual = np.random.geometric(.123456789, size=(3, 2))
        desired = np.array([[8, 7],
                            [17, 17],
                            [5, 12]])
        assert_array_equal(actual, desired)

    def test_gumbel(self):
        np.random.seed(self.seed)
        actual = np.random.gumbel(loc=.123456789, scale=2.0, size=(3, 2))
        desired = np.array([[0.19591898743416816, 0.34405539668096674],
                            [-1.4492522252274278, -1.47374816298446865],
                            [1.10651090478803416, -0.69535848626236174]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_gumbel_0(self):
        assert_equal(np.random.gumbel(scale=0), 0)
        assert_raises(ValueError, np.random.gumbel, scale=-0.)

    def test_hypergeometric(self):
        np.random.seed(self.seed)
        actual = np.random.hypergeometric(10, 5, 14, size=(3, 2))
        desired = np.array([[10, 10],
                            [10, 10],
                            [9, 9]])
        assert_array_equal(actual, desired)

        # Test nbad = 0
        actual = np.random.hypergeometric(5, 0, 3, size=4)
        desired = np.array([3, 3, 3, 3])
        assert_array_equal(actual, desired)

        actual = np.random.hypergeometric(15, 0, 12, size=4)
        desired = np.array([12, 12, 12, 12])
        assert_array_equal(actual, desired)

        # Test ngood = 0
        actual = np.random.hypergeometric(0, 5, 3, size=4)
        desired = np.array([0, 0, 0, 0])
        assert_array_equal(actual, desired)

        actual = np.random.hypergeometric(0, 15, 12, size=4)
        desired = np.array([0, 0, 0, 0])
        assert_array_equal(actual, desired)

    def test_laplace(self):
        np.random.seed(self.seed)
        actual = np.random.laplace(loc=.123456789, scale=2.0, size=(3, 2))
        desired = np.array([[0.66599721112760157, 0.52829452552221945],
                            [3.12791959514407125, 3.18202813572992005],
                            [-0.05391065675859356, 1.74901336242837324]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_laplace_0(self):
        assert_equal(np.random.laplace(scale=0), 0)
        assert_raises(ValueError, np.random.laplace, scale=-0.)

    def test_logistic(self):
        np.random.seed(self.seed)
        actual = np.random.logistic(loc=.123456789, scale=2.0, size=(3, 2))
        desired = np.array([[1.09232835305011444, 0.8648196662399954],
                            [4.27818590694950185, 4.33897006346929714],
                            [-0.21682183359214885, 2.63373365386060332]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_lognormal(self):
        np.random.seed(self.seed)
        actual = np.random.lognormal(mean=.123456789, sigma=2.0, size=(3, 2))
        desired = np.array([[16.50698631688883822, 36.54846706092654784],
                            [22.67886599981281748, 0.71617561058995771],
                            [65.72798501792723869, 86.84341601437161273]])
        assert_array_almost_equal(actual, desired, decimal=13)

    def test_lognormal_0(self):
        assert_equal(np.random.lognormal(sigma=0), 1)
        assert_raises(ValueError, np.random.lognormal, sigma=-0.)

    def test_logseries(self):
        np.random.seed(self.seed)
        actual = np.random.logseries(p=.923456789, size=(3, 2))
        desired = np.array([[2, 2],
                            [6, 17],
                            [3, 6]])
        assert_array_equal(actual, desired)

    def test_multinomial(self):
        np.random.seed(self.seed)
        actual = np.random.multinomial(20, [1/6.]*6, size=(3, 2))
        desired = np.array([[[4, 3, 5, 4, 2, 2],
                             [5, 2, 8, 2, 2, 1]],
                            [[3, 4, 3, 6, 0, 4],
                             [2, 1, 4, 3, 6, 4]],
                            [[4, 4, 2, 5, 2, 3],
                             [4, 3, 4, 2, 3, 4]]])
        assert_array_equal(actual, desired)

    def test_multivariate_normal(self):
        np.random.seed(self.seed)
        mean = (.123456789, 10)
        cov = [[1, 0], [0, 1]]
        size = (3, 2)
        actual = np.random.multivariate_normal(mean, cov, size)
        desired = np.array([[[1.463620246718631, 11.73759122771936],
                             [1.622445133300628, 9.771356667546383]],
                            [[2.154490787682787, 12.170324946056553],
                             [1.719909438201865, 9.230548443648306]],
                            [[0.689515026297799, 9.880729819607714],
                             [-0.023054015651998, 9.201096623542879]]])

        assert_array_almost_equal(actual, desired, decimal=15)

        # Check for default size, was raising deprecation warning
        actual = np.random.multivariate_normal(mean, cov)
        desired = np.array([0.895289569463708, 9.17180864067987])
        assert_array_almost_equal(actual, desired, decimal=15)

        # Check that non positive-semidefinite covariance warns with
        # RuntimeWarning
        mean = [0, 0]
        cov = [[1, 2], [2, 1]]
        assert_warns(RuntimeWarning, np.random.multivariate_normal, mean, cov)

        # and that it doesn't warn with RuntimeWarning check_valid='ignore'
        assert_no_warnings(np.random.multivariate_normal, mean, cov,
                           check_valid='ignore')

        # and that it raises with RuntimeWarning check_valid='raises'
        assert_raises(ValueError, np.random.multivariate_normal, mean, cov,
                      check_valid='raise')

        cov = np.array([[1, 0.1], [0.1, 1]], dtype=np.float32)
        with suppress_warnings() as sup:
            np.random.multivariate_normal(mean, cov)
            w = sup.record(RuntimeWarning)
            assert len(w) == 0

    def test_negative_binomial(self):
        np.random.seed(self.seed)
        actual = np.random.negative_binomial(n=100, p=.12345, size=(3, 2))
        desired = np.array([[848, 841],
                            [892, 611],
                            [779, 647]])
        assert_array_equal(actual, desired)

    def test_noncentral_chisquare(self):
        np.random.seed(self.seed)
        actual = np.random.noncentral_chisquare(df=5, nonc=5, size=(3, 2))
        desired = np.array([[23.91905354498517511, 13.35324692733826346],
                            [31.22452661329736401, 16.60047399466177254],
                            [5.03461598262724586, 17.94973089023519464]])
        assert_array_almost_equal(actual, desired, decimal=14)

        actual = np.random.noncentral_chisquare(df=.5, nonc=.2, size=(3, 2))
        desired = np.array([[1.47145377828516666,  0.15052899268012659],
                            [0.00943803056963588,  1.02647251615666169],
                            [0.332334982684171,  0.15451287602753125]])
        assert_array_almost_equal(actual, desired, decimal=14)

        np.random.seed(self.seed)
        actual = np.random.noncentral_chisquare(df=5, nonc=0, size=(3, 2))
        desired = np.array([[9.597154162763948, 11.725484450296079],
                            [10.413711048138335, 3.694475922923986],
                            [13.484222138963087, 14.377255424602957]])
        assert_array_almost_equal(actual, desired, decimal=14)

    def test_noncentral_f(self):
        np.random.seed(self.seed)
        actual = np.random.noncentral_f(dfnum=5, dfden=2, nonc=1,
                                        size=(3, 2))
        desired = np.array([[1.40598099674926669, 0.34207973179285761],
                            [3.57715069265772545, 7.92632662577829805],
                            [0.43741599463544162, 1.1774208752428319]])
        assert_array_almost_equal(actual, desired, decimal=14)

    def test_normal(self):
        np.random.seed(self.seed)
        actual = np.random.normal(loc=.123456789, scale=2.0, size=(3, 2))
        desired = np.array([[2.80378370443726244, 3.59863924443872163],
                            [3.121433477601256, -0.33382987590723379],
                            [4.18552478636557357, 4.46410668111310471]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_normal_0(self):
        assert_equal(np.random.normal(scale=0), 0)
        assert_raises(ValueError, np.random.normal, scale=-0.)

    def test_pareto(self):
        np.random.seed(self.seed)
        actual = np.random.pareto(a=.123456789, size=(3, 2))
        desired = np.array(
                [[2.46852460439034849e+03, 1.41286880810518346e+03],
                 [5.28287797029485181e+07, 6.57720981047328785e+07],
                 [1.40840323350391515e+02, 1.98390255135251704e+05]])
        # For some reason on 32-bit x86 Ubuntu 12.10 the [1, 0] entry in this
        # matrix differs by 24 nulps. Discussion:
        #   https://mail.python.org/pipermail/numpy-discussion/2012-September/063801.html
        # Consensus is that this is probably some gcc quirk that affects
        # rounding but not in any important way, so we just use a looser
        # tolerance on this test:
        np.testing.assert_array_almost_equal_nulp(actual, desired, nulp=30)

    def test_poisson(self):
        np.random.seed(self.seed)
        actual = np.random.poisson(lam=.123456789, size=(3, 2))
        desired = np.array([[0, 0],
                            [1, 0],
                            [0, 0]])
        assert_array_equal(actual, desired)

    def test_poisson_exceptions(self):
        lambig = np.iinfo('l').max
        lamneg = -1
        assert_raises(ValueError, np.random.poisson, lamneg)
        assert_raises(ValueError, np.random.poisson, [lamneg]*10)
        assert_raises(ValueError, np.random.poisson, lambig)
        assert_raises(ValueError, np.random.poisson, [lambig]*10)

    def test_power(self):
        np.random.seed(self.seed)
        actual = np.random.power(a=.123456789, size=(3, 2))
        desired = np.array([[0.02048932883240791, 0.01424192241128213],
                            [0.38446073748535298, 0.39499689943484395],
                            [0.00177699707563439, 0.13115505880863756]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_rayleigh(self):
        np.random.seed(self.seed)
        actual = np.random.rayleigh(scale=10, size=(3, 2))
        desired = np.array([[13.8882496494248393, 13.383318339044731],
                            [20.95413364294492098, 21.08285015800712614],
                            [11.06066537006854311, 17.35468505778271009]])
        assert_array_almost_equal(actual, desired, decimal=14)

    def test_rayleigh_0(self):
        assert_equal(np.random.rayleigh(scale=0), 0)
        assert_raises(ValueError, np.random.rayleigh, scale=-0.)

    def test_standard_cauchy(self):
        np.random.seed(self.seed)
        actual = np.random.standard_cauchy(size=(3, 2))
        desired = np.array([[0.77127660196445336, -6.55601161955910605],
                            [0.93582023391158309, -2.07479293013759447],
                            [-4.74601644297011926, 0.18338989290760804]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_standard_exponential(self):
        np.random.seed(self.seed)
        actual = np.random.standard_exponential(size=(3, 2))
        desired = np.array([[0.96441739162374596, 0.89556604882105506],
                            [2.1953785836319808, 2.22243285392490542],
                            [0.6116915921431676, 1.50592546727413201]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_standard_gamma(self):
        np.random.seed(self.seed)
        actual = np.random.standard_gamma(shape=3, size=(3, 2))
        desired = np.array([[5.50841531318455058, 6.62953470301903103],
                            [5.93988484943779227, 2.31044849402133989],
                            [7.54838614231317084, 8.012756093271868]])
        assert_array_almost_equal(actual, desired, decimal=14)

    def test_standard_gamma_0(self):
        assert_equal(np.random.standard_gamma(shape=0), 0)
        assert_raises(ValueError, np.random.standard_gamma, shape=-0.)

    def test_standard_normal(self):
        np.random.seed(self.seed)
        actual = np.random.standard_normal(size=(3, 2))
        desired = np.array([[1.34016345771863121, 1.73759122771936081],
                            [1.498988344300628, -0.2286433324536169],
                            [2.031033998682787, 2.17032494605655257]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_standard_t(self):
        np.random.seed(self.seed)
        actual = np.random.standard_t(df=10, size=(3, 2))
        desired = np.array([[0.97140611862659965, -0.08830486548450577],
                            [1.36311143689505321, -0.55317463909867071],
                            [-0.18473749069684214, 0.61181537341755321]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_triangular(self):
        np.random.seed(self.seed)
        actual = np.random.triangular(left=5.12, mode=10.23, right=20.34,
                                      size=(3, 2))
        desired = np.array([[12.68117178949215784, 12.4129206149193152],
                            [16.20131377335158263, 16.25692138747600524],
                            [11.20400690911820263, 14.4978144835829923]])
        assert_array_almost_equal(actual, desired, decimal=14)

    def test_uniform(self):
        np.random.seed(self.seed)
        actual = np.random.uniform(low=1.23, high=10.54, size=(3, 2))
        desired = np.array([[6.99097932346268003, 6.73801597444323974],
                            [9.50364421400426274, 9.53130618907631089],
                            [5.48995325769805476, 8.47493103280052118]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_uniform_range_bounds(self):
        fmin = np.finfo('float').min
        fmax = np.finfo('float').max

        func = np.random.uniform
        assert_raises(OverflowError, func, -np.inf, 0)
        assert_raises(OverflowError, func,  0,      np.inf)
        assert_raises(OverflowError, func,  fmin,   fmax)
        assert_raises(OverflowError, func, [-np.inf], [0])
        assert_raises(OverflowError, func, [0], [np.inf])

        # (fmax / 1e17) - fmin is within range, so this should not throw
        # account for i386 extended precision DBL_MAX / 1e17 + DBL_MAX >
        # DBL_MAX by increasing fmin a bit
        np.random.uniform(low=np.nextafter(fmin, 1), high=fmax / 1e17)

    def test_scalar_exception_propagation(self):
        # Tests that exceptions are correctly propagated in distributions
        # when called with objects that throw exceptions when converted to
        # scalars.
        #
        # Regression test for gh: 8865

        class ThrowingFloat(np.ndarray):
            def __float__(self):
                raise TypeError

        throwing_float = np.array(1.0).view(ThrowingFloat)
        assert_raises(TypeError, np.random.uniform, throwing_float,
                      throwing_float)

        class ThrowingInteger(np.ndarray):
            def __int__(self):
                raise TypeError

            __index__ = __int__

        throwing_int = np.array(1).view(ThrowingInteger)
        assert_raises(TypeError, np.random.hypergeometric, throwing_int, 1, 1)

    def test_vonmises(self):
        np.random.seed(self.seed)
        actual = np.random.vonmises(mu=1.23, kappa=1.54, size=(3, 2))
        desired = np.array([[2.28567572673902042, 2.89163838442285037],
                            [0.38198375564286025, 2.57638023113890746],
                            [1.19153771588353052, 1.83509849681825354]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_vonmises_small(self):
        # check infinite loop, gh-4720
        np.random.seed(self.seed)
        r = np.random.vonmises(mu=0., kappa=1.1e-8, size=10**6)
        np.testing.assert_(np.isfinite(r).all())

    def test_wald(self):
        np.random.seed(self.seed)
        actual = np.random.wald(mean=1.23, scale=1.54, size=(3, 2))
        desired = np.array([[3.82935265715889983, 5.13125249184285526],
                            [0.35045403618358717, 1.50832396872003538],
                            [0.24124319895843183, 0.22031101461955038]])
        assert_array_almost_equal(actual, desired, decimal=14)

    def test_weibull(self):
        np.random.seed(self.seed)
        actual = np.random.weibull(a=1.23, size=(3, 2))
        desired = np.array([[0.97097342648766727, 0.91422896443565516],
                            [1.89517770034962929, 1.91414357960479564],
                            [0.67057783752390987, 1.39494046635066793]])
        assert_array_almost_equal(actual, desired, decimal=15)

    def test_weibull_0(self):
        np.random.seed(self.seed)
        assert_equal(np.random.weibull(a=0, size=12), np.zeros(12))
        assert_raises(ValueError, np.random.weibull, a=-0.)

    def test_zipf(self):
        np.random.seed(self.seed)
        actual = np.random.zipf(a=1.23, size=(3, 2))
        desired = np.array([[66, 29],
                            [1, 1],
                            [3, 13]])
        assert_array_equal(actual, desired)


class TestBroadcast:
    # tests that functions that broadcast behave
    # correctly when presented with non-scalar arguments
    def setup_method(self):
        self.seed = 123456789

    def setSeed(self):
        np.random.seed(self.seed)

    # TODO: Include test for randint once it can broadcast
    # Can steal the test written in PR #6938

    def test_uniform(self):
        low = [0]
        high = [1]
        uniform = np.random.uniform
        desired = np.array([0.53283302478975902,
                            0.53413660089041659,
                            0.50955303552646702])

        self.setSeed()
        actual = uniform(low * 3, high)
        assert_array_almost_equal(actual, desired, decimal=14)

        self.setSeed()
        actual = uniform(low, high * 3)
        assert_array_almost_equal(actual, desired, decimal=14)

    def test_normal(self):
        loc = [0]
        scale = [1]
        bad_scale = [-1]
        normal = np.random.normal
        desired = np.array([2.2129019979039612,
                            2.1283977976520019,
                            1.8417114045748335])

        self.setSeed()
        actual = normal(loc * 3, scale)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, normal, loc * 3, bad_scale)

        self.setSeed()
        actual = normal(loc, scale * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, normal, loc, bad_scale * 3)

    def test_beta(self):
        a = [1]
        b = [2]
        bad_a = [-1]
        bad_b = [-2]
        beta = np.random.beta
        desired = np.array([0.19843558305989056,
                            0.075230336409423643,
                            0.24976865978980844])

        self.setSeed()
        actual = beta(a * 3, b)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, beta, bad_a * 3, b)
        assert_raises(ValueError, beta, a * 3, bad_b)

        self.setSeed()
        actual = beta(a, b * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, beta, bad_a, b * 3)
        assert_raises(ValueError, beta, a, bad_b * 3)

    def test_exponential(self):
        scale = [1]
        bad_scale = [-1]
        exponential = np.random.exponential
        desired = np.array([0.76106853658845242,
                            0.76386282278691653,
                            0.71243813125891797])

        self.setSeed()
        actual = exponential(scale * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, exponential, bad_scale * 3)

    def test_standard_gamma(self):
        shape = [1]
        bad_shape = [-1]
        std_gamma = np.random.standard_gamma
        desired = np.array([0.76106853658845242,
                            0.76386282278691653,
                            0.71243813125891797])

        self.setSeed()
        actual = std_gamma(shape * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, std_gamma, bad_shape * 3)

    def test_gamma(self):
        shape = [1]
        scale = [2]
        bad_shape = [-1]
        bad_scale = [-2]
        gamma = np.random.gamma
        desired = np.array([1.5221370731769048,
                            1.5277256455738331,
                            1.4248762625178359])

        self.setSeed()
        actual = gamma(shape * 3, scale)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, gamma, bad_shape * 3, scale)
        assert_raises(ValueError, gamma, shape * 3, bad_scale)

        self.setSeed()
        actual = gamma(shape, scale * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, gamma, bad_shape, scale * 3)
        assert_raises(ValueError, gamma, shape, bad_scale * 3)

    def test_f(self):
        dfnum = [1]
        dfden = [2]
        bad_dfnum = [-1]
        bad_dfden = [-2]
        f = np.random.f
        desired = np.array([0.80038951638264799,
                            0.86768719635363512,
                            2.7251095168386801])

        self.setSeed()
        actual = f(dfnum * 3, dfden)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, f, bad_dfnum * 3, dfden)
        assert_raises(ValueError, f, dfnum * 3, bad_dfden)

        self.setSeed()
        actual = f(dfnum, dfden * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, f, bad_dfnum, dfden * 3)
        assert_raises(ValueError, f, dfnum, bad_dfden * 3)

    def test_noncentral_f(self):
        dfnum = [2]
        dfden = [3]
        nonc = [4]
        bad_dfnum = [0]
        bad_dfden = [-1]
        bad_nonc = [-2]
        nonc_f = np.random.noncentral_f
        desired = np.array([9.1393943263705211,
                            13.025456344595602,
                            8.8018098359100545])

        self.setSeed()
        actual = nonc_f(dfnum * 3, dfden, nonc)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, nonc_f, bad_dfnum * 3, dfden, nonc)
        assert_raises(ValueError, nonc_f, dfnum * 3, bad_dfden, nonc)
        assert_raises(ValueError, nonc_f, dfnum * 3, dfden, bad_nonc)

        self.setSeed()
        actual = nonc_f(dfnum, dfden * 3, nonc)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, nonc_f, bad_dfnum, dfden * 3, nonc)
        assert_raises(ValueError, nonc_f, dfnum, bad_dfden * 3, nonc)
        assert_raises(ValueError, nonc_f, dfnum, dfden * 3, bad_nonc)

        self.setSeed()
        actual = nonc_f(dfnum, dfden, nonc * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, nonc_f, bad_dfnum, dfden, nonc * 3)
        assert_raises(ValueError, nonc_f, dfnum, bad_dfden, nonc * 3)
        assert_raises(ValueError, nonc_f, dfnum, dfden, bad_nonc * 3)

    def test_noncentral_f_small_df(self):
        self.setSeed()
        desired = np.array([6.869638627492048, 0.785880199263955])
        actual = np.random.noncentral_f(0.9, 0.9, 2, size=2)
        assert_array_almost_equal(actual, desired, decimal=14)

    def test_chisquare(self):
        df = [1]
        bad_df = [-1]
        chisquare = np.random.chisquare
        desired = np.array([0.57022801133088286,
                            0.51947702108840776,
                            0.1320969254923558])

        self.setSeed()
        actual = chisquare(df * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, chisquare, bad_df * 3)

    def test_noncentral_chisquare(self):
        df = [1]
        nonc = [2]
        bad_df = [-1]
        bad_nonc = [-2]
        nonc_chi = np.random.noncentral_chisquare
        desired = np.array([9.0015599467913763,
                            4.5804135049718742,
                            6.0872302432834564])

        self.setSeed()
        actual = nonc_chi(df * 3, nonc)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, nonc_chi, bad_df * 3, nonc)
        assert_raises(ValueError, nonc_chi, df * 3, bad_nonc)

        self.setSeed()
        actual = nonc_chi(df, nonc * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, nonc_chi, bad_df, nonc * 3)
        assert_raises(ValueError, nonc_chi, df, bad_nonc * 3)

    def test_standard_t(self):
        df = [1]
        bad_df = [-1]
        t = np.random.standard_t
        desired = np.array([3.0702872575217643,
                            5.8560725167361607,
                            1.0274791436474273])

        self.setSeed()
        actual = t(df * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, t, bad_df * 3)

    def test_vonmises(self):
        mu = [2]
        kappa = [1]
        bad_kappa = [-1]
        vonmises = np.random.vonmises
        desired = np.array([2.9883443664201312,
                            -2.7064099483995943,
                            -1.8672476700665914])

        self.setSeed()
        actual = vonmises(mu * 3, kappa)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, vonmises, mu * 3, bad_kappa)

        self.setSeed()
        actual = vonmises(mu, kappa * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, vonmises, mu, bad_kappa * 3)

    def test_pareto(self):
        a = [1]
        bad_a = [-1]
        pareto = np.random.pareto
        desired = np.array([1.1405622680198362,
                            1.1465519762044529,
                            1.0389564467453547])

        self.setSeed()
        actual = pareto(a * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, pareto, bad_a * 3)

    def test_weibull(self):
        a = [1]
        bad_a = [-1]
        weibull = np.random.weibull
        desired = np.array([0.76106853658845242,
                            0.76386282278691653,
                            0.71243813125891797])

        self.setSeed()
        actual = weibull(a * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, weibull, bad_a * 3)

    def test_power(self):
        a = [1]
        bad_a = [-1]
        power = np.random.power
        desired = np.array([0.53283302478975902,
                            0.53413660089041659,
                            0.50955303552646702])

        self.setSeed()
        actual = power(a * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, power, bad_a * 3)

    def test_laplace(self):
        loc = [0]
        scale = [1]
        bad_scale = [-1]
        laplace = np.random.laplace
        desired = np.array([0.067921356028507157,
                            0.070715642226971326,
                            0.019290950698972624])

        self.setSeed()
        actual = laplace(loc * 3, scale)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, laplace, loc * 3, bad_scale)

        self.setSeed()
        actual = laplace(loc, scale * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, laplace, loc, bad_scale * 3)

    def test_gumbel(self):
        loc = [0]
        scale = [1]
        bad_scale = [-1]
        gumbel = np.random.gumbel
        desired = np.array([0.2730318639556768,
                            0.26936705726291116,
                            0.33906220393037939])

        self.setSeed()
        actual = gumbel(loc * 3, scale)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, gumbel, loc * 3, bad_scale)

        self.setSeed()
        actual = gumbel(loc, scale * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, gumbel, loc, bad_scale * 3)

    def test_logistic(self):
        loc = [0]
        scale = [1]
        bad_scale = [-1]
        logistic = np.random.logistic
        desired = np.array([0.13152135837586171,
                            0.13675915696285773,
                            0.038216792802833396])

        self.setSeed()
        actual = logistic(loc * 3, scale)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, logistic, loc * 3, bad_scale)

        self.setSeed()
        actual = logistic(loc, scale * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, logistic, loc, bad_scale * 3)

    def test_lognormal(self):
        mean = [0]
        sigma = [1]
        bad_sigma = [-1]
        lognormal = np.random.lognormal
        desired = np.array([9.1422086044848427,
                            8.4013952870126261,
                            6.3073234116578671])

        self.setSeed()
        actual = lognormal(mean * 3, sigma)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, lognormal, mean * 3, bad_sigma)

        self.setSeed()
        actual = lognormal(mean, sigma * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, lognormal, mean, bad_sigma * 3)

    def test_rayleigh(self):
        scale = [1]
        bad_scale = [-1]
        rayleigh = np.random.rayleigh
        desired = np.array([1.2337491937897689,
                            1.2360119924878694,
                            1.1936818095781789])

        self.setSeed()
        actual = rayleigh(scale * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, rayleigh, bad_scale * 3)

    def test_wald(self):
        mean = [0.5]
        scale = [1]
        bad_mean = [0]
        bad_scale = [-2]
        wald = np.random.wald
        desired = np.array([0.11873681120271318,
                            0.12450084820795027,
                            0.9096122728408238])

        self.setSeed()
        actual = wald(mean * 3, scale)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, wald, bad_mean * 3, scale)
        assert_raises(ValueError, wald, mean * 3, bad_scale)

        self.setSeed()
        actual = wald(mean, scale * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, wald, bad_mean, scale * 3)
        assert_raises(ValueError, wald, mean, bad_scale * 3)
        assert_raises(ValueError, wald, 0.0, 1)
        assert_raises(ValueError, wald, 0.5, 0.0)

    def test_triangular(self):
        left = [1]
        right = [3]
        mode = [2]
        bad_left_one = [3]
        bad_mode_one = [4]
        bad_left_two, bad_mode_two = right * 2
        triangular = np.random.triangular
        desired = np.array([2.03339048710429,
                            2.0347400359389356,
                            2.0095991069536208])

        self.setSeed()
        actual = triangular(left * 3, mode, right)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, triangular, bad_left_one * 3, mode, right)
        assert_raises(ValueError, triangular, left * 3, bad_mode_one, right)
        assert_raises(ValueError, triangular, bad_left_two * 3, bad_mode_two,
                      right)

        self.setSeed()
        actual = triangular(left, mode * 3, right)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, triangular, bad_left_one, mode * 3, right)
        assert_raises(ValueError, triangular, left, bad_mode_one * 3, right)
        assert_raises(ValueError, triangular, bad_left_two, bad_mode_two * 3,
                      right)

        self.setSeed()
        actual = triangular(left, mode, right * 3)
        assert_array_almost_equal(actual, desired, decimal=14)
        assert_raises(ValueError, triangular, bad_left_one, mode, right * 3)
        assert_raises(ValueError, triangular, left, bad_mode_one, right * 3)
        assert_raises(ValueError, triangular, bad_left_two, bad_mode_two,
                      right * 3)

    def test_binomial(self):
        n = [1]
        p = [0.5]
        bad_n = [-1]
        bad_p_one = [-1]
        bad_p_two = [1.5]
        binom = np.random.binomial
        desired = np.array([1, 1, 1])

        self.setSeed()
        actual = binom(n * 3, p)
        assert_array_equal(actual, desired)
        assert_raises(ValueError, binom, bad_n * 3, p)
        assert_raises(ValueError, binom, n * 3, bad_p_one)
        assert_raises(ValueError, binom, n * 3, bad_p_two)

        self.setSeed()
        actual = binom(n, p * 3)
        assert_array_equal(actual, desired)
        assert_raises(ValueError, binom, bad_n, p * 3)
        assert_raises(ValueError, binom, n, bad_p_one * 3)
        assert_raises(ValueError, binom, n, bad_p_two * 3)

    def test_negative_binomial(self):
        n = [1]
        p = [0.5]
        bad_n = [-1]
        bad_p_one = [-1]
        bad_p_two = [1.5]
        neg_binom = np.random.negative_binomial
        desired = np.array([1, 0, 1])

        self.setSeed()
        actual = neg_binom(n * 3, p)
        assert_array_equal(actual, desired)
        assert_raises(ValueError, neg_binom, bad_n * 3, p)
        assert_raises(ValueError, neg_binom, n * 3, bad_p_one)
        assert_raises(ValueError, neg_binom, n * 3, bad_p_two)

        self.setSeed()
        actual = neg_binom(n, p * 3)
        assert_array_equal(actual, desired)
        assert_raises(ValueError, neg_binom, bad_n, p * 3)
        assert_raises(ValueError, neg_binom, n, bad_p_one * 3)
        assert_raises(ValueError, neg_binom, n, bad_p_two * 3)

    def test_poisson(self):
        max_lam = np.random.RandomState()._poisson_lam_max

        lam = [1]
        bad_lam_one = [-1]
        bad_lam_two = [max_lam * 2]
        poisson = np.random.poisson
        desired = np.array([1, 1, 0])

        self.setSeed()
        actual = poisson(lam * 3)
        assert_array_equal(actual, desired)
        assert_raises(ValueError, poisson, bad_lam_one * 3)
        assert_raises(ValueError, poisson, bad_lam_two * 3)

    def test_zipf(self):
        a = [2]
        bad_a = [0]
        zipf = np.random.zipf
        desired = np.array([2, 2, 1])

        self.setSeed()
        actual = zipf(a * 3)
        assert_array_equal(actual, desired)
        assert_raises(ValueError, zipf, bad_a * 3)
        with np.errstate(invalid='ignore'):
            assert_raises(ValueError, zipf, np.nan)
            assert_raises(ValueError, zipf, [0, 0, np.nan])

    def test_geometric(self):
        p = [0.5]
        bad_p_one = [-1]
        bad_p_two = [1.5]
        geom = np.random.geometric
        desired = np.array([2, 2, 2])

        self.setSeed()
        actual = geom(p * 3)
        assert_array_equal(actual, desired)
        assert_raises(ValueError, geom, bad_p_one * 3)
        assert_raises(ValueError, geom, bad_p_two * 3)

    def test_hypergeometric(self):
        ngood = [1]
        nbad = [2]
        nsample = [2]
        bad_ngood = [-1]
        bad_nbad = [-2]
        bad_nsample_one = [0]
        bad_nsample_two = [4]
        hypergeom = np.random.hypergeometric
        desired = np.array([1, 1, 1])

        self.setSeed()
        actual = hypergeom(ngood * 3, nbad, nsample)
        assert_array_equal(actual, desired)
        assert_raises(ValueError, hypergeom, bad_ngood * 3, nbad, nsample)
        assert_raises(ValueError, hypergeom, ngood * 3, bad_nbad, nsample)
        assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_one)
        assert_raises(ValueError, hypergeom, ngood * 3, nbad, bad_nsample_two)

        self.setSeed()
        actual = hypergeom(ngood, nbad * 3, nsample)
        assert_array_equal(actual, desired)
        assert_raises(ValueError, hypergeom, bad_ngood, nbad * 3, nsample)
        assert_raises(ValueError, hypergeom, ngood, bad_nbad * 3, nsample)
        assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_one)
        assert_raises(ValueError, hypergeom, ngood, nbad * 3, bad_nsample_two)

        self.setSeed()
        actual = hypergeom(ngood, nbad, nsample * 3)
        assert_array_equal(actual, desired)
        assert_raises(ValueError, hypergeom, bad_ngood, nbad, nsample * 3)
        assert_raises(ValueError, hypergeom, ngood, bad_nbad, nsample * 3)
        assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_one * 3)
        assert_raises(ValueError, hypergeom, ngood, nbad, bad_nsample_two * 3)

    def test_logseries(self):
        p = [0.5]
        bad_p_one = [2]
        bad_p_two = [-1]
        logseries = np.random.logseries
        desired = np.array([1, 1, 1])

        self.setSeed()
        actual = logseries(p * 3)
        assert_array_equal(actual, desired)
        assert_raises(ValueError, logseries, bad_p_one * 3)
        assert_raises(ValueError, logseries, bad_p_two * 3)


@pytest.mark.skipif(IS_WASM, reason="can't start thread")
class TestThread:
    # make sure each state produces the same sequence even in threads
    def setup_method(self):
        self.seeds = range(4)

    def check_function(self, function, sz):
        from threading import Thread

        out1 = np.empty((len(self.seeds),) + sz)
        out2 = np.empty((len(self.seeds),) + sz)

        # threaded generation
        t = [Thread(target=function, args=(np.random.RandomState(s), o))
             for s, o in zip(self.seeds, out1)]
        [x.start() for x in t]
        [x.join() for x in t]

        # the same serial
        for s, o in zip(self.seeds, out2):
            function(np.random.RandomState(s), o)

        # these platforms change x87 fpu precision mode in threads
        if np.intp().dtype.itemsize == 4 and sys.platform == "win32":
            assert_array_almost_equal(out1, out2)
        else:
            assert_array_equal(out1, out2)

    def test_normal(self):
        def gen_random(state, out):
            out[...] = state.normal(size=10000)
        self.check_function(gen_random, sz=(10000,))

    def test_exp(self):
        def gen_random(state, out):
            out[...] = state.exponential(scale=np.ones((100, 1000)))
        self.check_function(gen_random, sz=(100, 1000))

    def test_multinomial(self):
        def gen_random(state, out):
            out[...] = state.multinomial(10, [1/6.]*6, size=10000)
        self.check_function(gen_random, sz=(10000, 6))


# See Issue #4263
class TestSingleEltArrayInput:
    def setup_method(self):
        self.argOne = np.array([2])
        self.argTwo = np.array([3])
        self.argThree = np.array([4])
        self.tgtShape = (1,)

    def test_one_arg_funcs(self):
        funcs = (np.random.exponential, np.random.standard_gamma,
                 np.random.chisquare, np.random.standard_t,
                 np.random.pareto, np.random.weibull,
                 np.random.power, np.random.rayleigh,
                 np.random.poisson, np.random.zipf,
                 np.random.geometric, np.random.logseries)

        probfuncs = (np.random.geometric, np.random.logseries)

        for func in funcs:
            if func in probfuncs:  # p < 1.0
                out = func(np.array([0.5]))

            else:
                out = func(self.argOne)

            assert_equal(out.shape, self.tgtShape)

    def test_two_arg_funcs(self):
        funcs = (np.random.uniform, np.random.normal,
                 np.random.beta, np.random.gamma,
                 np.random.f, np.random.noncentral_chisquare,
                 np.random.vonmises, np.random.laplace,
                 np.random.gumbel, np.random.logistic,
                 np.random.lognormal, np.random.wald,
                 np.random.binomial, np.random.negative_binomial)

        probfuncs = (np.random.binomial, np.random.negative_binomial)

        for func in funcs:
            if func in probfuncs:  # p <= 1
                argTwo = np.array([0.5])

            else:
                argTwo = self.argTwo

            out = func(self.argOne, argTwo)
            assert_equal(out.shape, self.tgtShape)

            out = func(self.argOne[0], argTwo)
            assert_equal(out.shape, self.tgtShape)

            out = func(self.argOne, argTwo[0])
            assert_equal(out.shape, self.tgtShape)

    def test_randint(self):
        itype = [bool, np.int8, np.uint8, np.int16, np.uint16,
                 np.int32, np.uint32, np.int64, np.uint64]
        func = np.random.randint
        high = np.array([1])
        low = np.array([0])

        for dt in itype:
            out = func(low, high, dtype=dt)
            assert_equal(out.shape, self.tgtShape)

            out = func(low[0], high, dtype=dt)
            assert_equal(out.shape, self.tgtShape)

            out = func(low, high[0], dtype=dt)
            assert_equal(out.shape, self.tgtShape)

    def test_three_arg_funcs(self):
        funcs = [np.random.noncentral_f, np.random.triangular,
                 np.random.hypergeometric]

        for func in funcs:
            out = func(self.argOne, self.argTwo, self.argThree)
            assert_equal(out.shape, self.tgtShape)

            out = func(self.argOne[0], self.argTwo, self.argThree)
            assert_equal(out.shape, self.tgtShape)

            out = func(self.argOne, self.argTwo[0], self.argThree)
            assert_equal(out.shape, self.tgtShape)