PNG  IHDRQgAMA a cHRMz&u0`:pQ<bKGDgmIDATxwUﹻ& ^CX(J I@ "% (** BX +*i"]j(IH{~R)[~>h{}gy)I$Ij .I$I$ʊy@}x.: $I$Ii}VZPC)I$IF ^0ʐJ$I$Q^}{"r=OzI$gRZeC.IOvH eKX $IMpxsk.쒷/&r[޳<v| .I~)@$updYRa$I |M.e JaֶpSYR6j>h%IRز if&uJ)M$I vLi=H;7UJ,],X$I1AҒJ$ XY XzI@GNҥRT)E@;]K*Mw;#5_wOn~\ DC&$(A5 RRFkvIR}l!RytRl;~^ǷJj اy뷦BZJr&ӥ8Pjw~vnv X^(I;4R=P[3]J,]ȏ~:3?[ a&e)`e*P[4]T=Cq6R[ ~ޤrXR Հg(t_HZ-Hg M$ãmL5R uk*`%C-E6/%[t X.{8P9Z.vkXŐKjgKZHg(aK9ڦmKjѺm_ \#$5,)-  61eJ,5m| r'= &ڡd%-]J on Xm|{ RҞe $eڧY XYrԮ-a7RK6h>n$5AVڴi*ֆK)mѦtmr1p| q:흺,)Oi*ֺK)ܬ֦K-5r3>0ԔHjJئEZj,%re~/z%jVMڸmrt)3]J,T K֦OvԒgii*bKiNO~%PW0=dii2tJ9Jݕ{7"I P9JKTbu,%r"6RKU}Ij2HKZXJ,妝 XYrP ެ24c%i^IK|.H,%rb:XRl1X4Pe/`x&P8Pj28Mzsx2r\zRPz4J}yP[g=L) .Q[6RjWgp FIH*-`IMRaK9TXcq*I y[jE>cw%gLRԕiFCj-ďa`#e~I j,%r,)?[gp FI˨mnWX#>mʔ XA DZf9,nKҲzIZXJ,L#kiPz4JZF,I,`61%2s $,VOϚ2/UFJfy7K> X+6 STXIeJILzMfKm LRaK9%|4p9LwJI!`NsiazĔ)%- XMq>pk$-$Q2x#N ؎-QR}ᶦHZډ)J,l#i@yn3LN`;nڔ XuX5pF)m|^0(>BHF9(cզEerJI rg7 4I@z0\JIi䵙RR0s;$s6eJ,`n 䂦0a)S)A 1eJ,堌#635RIgpNHuTH_SԕqVe ` &S)>p;S$魁eKIuX`I4춒o}`m$1":PI<[v9^\pTJjriRŭ P{#{R2,`)e-`mgj~1ϣLKam7&U\j/3mJ,`F;M'䱀 .KR#)yhTq;pcK9(q!w?uRR,n.yw*UXj#\]ɱ(qv2=RqfB#iJmmL<]Y͙#$5 uTU7ӦXR+q,`I}qL'`6Kͷ6r,]0S$- [RKR3oiRE|nӦXR.(i:LDLTJjY%o:)6rxzҒqTJjh㞦I.$YR.ʼnGZ\ֿf:%55 I˼!6dKxm4E"mG_ s? .e*?LRfK9%q#uh$)i3ULRfK9yxm܌bj84$i1U^@Wbm4uJ,ҪA>_Ij?1v32[gLRD96oTaR׿N7%L2 NT,`)7&ƝL*꽙yp_$M2#AS,`)7$rkTA29_Iye"|/0t)$n XT2`YJ;6Jx".e<`$) PI$5V4]29SRI>~=@j]lp2`K9Jaai^" Ԋ29ORI%:XV5]JmN9]H;1UC39NI%Xe78t)a;Oi Ҙ>Xt"~G>_mn:%|~ޅ_+]$o)@ǀ{hgN;IK6G&rp)T2i୦KJuv*T=TOSV>(~D>dm,I*Ɛ:R#ۙNI%D>G.n$o;+#RR!.eU˽TRI28t)1LWϚ>IJa3oFbu&:tJ*(F7y0ZR ^p'Ii L24x| XRI%ۄ>S1]Jy[zL$adB7.eh4%%누>WETf+3IR:I3Xה)3אOۦSRO'ٺ)S}"qOr[B7ϙ.edG)^ETR"RtRݜh0}LFVӦDB^k_JDj\=LS(Iv─aTeZ%eUAM-0;~˃@i|l @S4y72>sX-vA}ϛBI!ݎߨWl*)3{'Y|iSlEڻ(5KtSI$Uv02,~ԩ~x;P4ցCrO%tyn425:KMlD ^4JRxSهF_}شJTS6uj+ﷸk$eZO%G*^V2u3EMj3k%)okI]dT)URKDS 7~m@TJR~荪fT"֛L \sM -0T KfJz+nإKr L&j()[E&I ߴ>e FW_kJR|!O:5/2跌3T-'|zX ryp0JS ~^F>-2< `*%ZFP)bSn"L :)+pʷf(pO3TMW$~>@~ū:TAIsV1}S2<%ޟM?@iT ,Eūoz%i~g|`wS(]oȤ8)$ ntu`өe`6yPl IzMI{ʣzʨ )IZ2= ld:5+請M$-ї;U>_gsY$ÁN5WzWfIZ)-yuXIfp~S*IZdt;t>KūKR|$#LcԀ+2\;kJ`]YǔM1B)UbG"IRߊ<xܾӔJ0Z='Y嵤 Leveg)$znV-º^3Ւof#0Tfk^Zs[*I꯳3{)ˬW4Ւ4 OdpbZRS|*I 55#"&-IvT&/윚Ye:i$ 9{LkuRe[I~_\ؠ%>GL$iY8 9ܕ"S`kS.IlC;Ҏ4x&>u_0JLr<J2(^$5L s=MgV ~,Iju> 7r2)^=G$1:3G< `J3~&IR% 6Tx/rIj3O< ʔ&#f_yXJiގNSz; Tx(i8%#4 ~AS+IjerIUrIj362v885+IjAhK__5X%nV%Iͳ-y|7XV2v4fzo_68"S/I-qbf; LkF)KSM$ Ms>K WNV}^`-큧32ŒVؙGdu,^^m%6~Nn&͓3ŒVZMsRpfEW%IwdǀLm[7W&bIRL@Q|)* i ImsIMmKmyV`i$G+R 0tV'!V)֏28vU7͒vHꦼtxꗞT ;S}7Mf+fIRHNZUkUx5SAJㄌ9MqμAIRi|j5)o*^'<$TwI1hEU^c_j?Е$%d`z cyf,XO IJnTgA UXRD }{H}^S,P5V2\Xx`pZ|Yk:$e ~ @nWL.j+ϝYb퇪bZ BVu)u/IJ_ 1[p.p60bC >|X91P:N\!5qUB}5a5ja `ubcVxYt1N0Zzl4]7­gKj]?4ϻ *[bg$)+À*x쳀ogO$~,5 زUS9 lq3+5mgw@np1sso Ӻ=|N6 /g(Wv7U;zωM=wk,0uTg_`_P`uz?2yI!b`kĸSo+Qx%!\οe|އԁKS-s6pu_(ֿ$i++T8=eY; צP+phxWQv*|p1. ά. XRkIQYP,drZ | B%wP|S5`~́@i޾ E;Չaw{o'Q?%iL{u D?N1BD!owPHReFZ* k_-~{E9b-~P`fE{AܶBJAFO wx6Rox5 K5=WwehS8 (JClJ~ p+Fi;ŗo+:bD#g(C"wA^ r.F8L;dzdIHUX݆ϞXg )IFqem%I4dj&ppT{'{HOx( Rk6^C٫O.)3:s(۳(Z?~ٻ89zmT"PLtw䥈5&b<8GZ-Y&K?e8,`I6e(֍xb83 `rzXj)F=l($Ij 2*(F?h(/9ik:I`m#p3MgLaKjc/U#n5S# m(^)=y=đx8ŬI[U]~SцA4p$-F i(R,7Cx;X=cI>{Km\ o(Tv2vx2qiiDJN,Ҏ!1f 5quBj1!8 rDFd(!WQl,gSkL1Bxg''՞^ǘ;pQ P(c_ IRujg(Wz bs#P­rz> k c&nB=q+ؔXn#r5)co*Ũ+G?7< |PQӣ'G`uOd>%Mctz# Ԫڞ&7CaQ~N'-P.W`Oedp03C!IZcIAMPUۀ5J<\u~+{9(FbbyAeBhOSܳ1 bÈT#ŠyDžs,`5}DC-`̞%r&ڙa87QWWp6e7 Rϫ/oY ꇅ Nܶըtc!LA T7V4Jsū I-0Pxz7QNF_iZgúWkG83 0eWr9 X]㾮݁#Jˢ C}0=3ݱtBi]_ &{{[/o[~ \q鯜00٩|cD3=4B_b RYb$óBRsf&lLX#M*C_L܄:gx)WΘsGSbuL rF$9';\4Ɍq'n[%p.Q`u hNb`eCQyQ|l_C>Lb꟟3hSb #xNxSs^ 88|Mz)}:](vbۢamŖ࿥ 0)Q7@0=?^k(*J}3ibkFn HjB׻NO z x}7p 0tfDX.lwgȔhԾŲ }6g E |LkLZteu+=q\Iv0쮑)QٵpH8/2?Σo>Jvppho~f>%bMM}\//":PTc(v9v!gոQ )UfVG+! 35{=x\2+ki,y$~A1iC6#)vC5^>+gǵ@1Hy٪7u;p psϰu/S <aʸGu'tD1ԝI<pg|6j'p:tպhX{o(7v],*}6a_ wXRk,O]Lܳ~Vo45rp"N5k;m{rZbΦ${#)`(Ŵg,;j%6j.pyYT?}-kBDc3qA`NWQū20/^AZW%NQ MI.X#P#,^Ebc&?XR tAV|Y.1!؅⨉ccww>ivl(JT~ u`ٵDm q)+Ri x/x8cyFO!/*!/&,7<.N,YDŽ&ܑQF1Bz)FPʛ?5d 6`kQձ λc؎%582Y&nD_$Je4>a?! ͨ|ȎWZSsv8 j(I&yj Jb5m?HWp=g}G3#|I,5v珿] H~R3@B[☉9Ox~oMy=J;xUVoj bUsl_35t-(ՃɼRB7U!qc+x4H_Qo֮$[GO<4`&č\GOc[.[*Af%mG/ ňM/r W/Nw~B1U3J?P&Y )`ѓZ1p]^l“W#)lWZilUQu`-m|xĐ,_ƪ|9i:_{*(3Gѧ}UoD+>m_?VPۅ15&}2|/pIOʵ> GZ9cmíتmnz)yߐbD >e}:) r|@R5qVSA10C%E_'^8cR7O;6[eKePGϦX7jb}OTGO^jn*媓7nGMC t,k31Rb (vyܴʭ!iTh8~ZYZp(qsRL ?b}cŨʊGO^!rPJO15MJ[c&~Z`"ѓޔH1C&^|Ш|rʼ,AwĴ?b5)tLU)F| &g٣O]oqSUjy(x<Ϳ3 .FSkoYg2 \_#wj{u'rQ>o;%n|F*O_L"e9umDds?.fuuQbIWz |4\0 sb;OvxOSs; G%T4gFRurj(֍ڑb uԖKDu1MK{1^ q; C=6\8FR艇!%\YÔU| 88m)֓NcLve C6z;o&X x59:q61Z(T7>C?gcļxѐ Z oo-08jہ x,`' ҔOcRlf~`jj".Nv+sM_]Zk g( UOPyεx%pUh2(@il0ݽQXxppx-NS( WO+轾 nFߢ3M<;z)FBZjciu/QoF 7R¥ ZFLF~#ȣߨ^<쩡ݛкvџ))ME>ώx4m#!-m!L;vv#~Y[đKmx9.[,UFS CVkZ +ߟrY٧IZd/ioi$%͝ب_ֶX3ܫhNU ZZgk=]=bbJS[wjU()*I =ώ:}-蹞lUj:1}MWm=̛ _ ¾,8{__m{_PVK^n3esw5ӫh#$-q=A̟> ,^I}P^J$qY~Q[ Xq9{#&T.^GVj__RKpn,b=`żY@^՝;z{paVKkQXj/)y TIc&F;FBG7wg ZZDG!x r_tƢ!}i/V=M/#nB8 XxЫ ^@CR<{䤭YCN)eKOSƟa $&g[i3.C6xrOc8TI;o hH6P&L{@q6[ Gzp^71j(l`J}]e6X☉#͕ ׈$AB1Vjh㭦IRsqFBjwQ_7Xk>y"N=MB0 ,C #o6MRc0|$)ف"1!ixY<B9mx `,tA>)5ػQ?jQ?cn>YZe Tisvh# GMމȇp:ԴVuږ8ɼH]C.5C!UV;F`mbBk LTMvPʍϤj?ԯ/Qr1NB`9s"s TYsz &9S%U԰> {<ؿSMxB|H\3@!U| k']$U+> |HHMLޢ?V9iD!-@x TIî%6Z*9X@HMW#?nN ,oe6?tQwڱ.]-y':mW0#!J82qFjH -`ѓ&M0u Uγmxϵ^-_\])@0Rt.8/?ٰCY]x}=sD3ojަЫNuS%U}ԤwHH>ڗjܷ_3gN q7[q2la*ArǓԖ+p8/RGM ]jacd(JhWko6ڎbj]i5Bj3+3!\j1UZLsLTv8HHmup<>gKMJj0@H%,W΃7R) ">c, xixј^ aܖ>H[i.UIHc U1=yW\=S*GR~)AF=`&2h`DzT󑓶J+?W+}C%P:|0H܆}-<;OC[~o.$~i}~HQ TvXΈr=b}$vizL4:ȰT|4~*!oXQR6Lk+#t/g lԁߖ[Jڶ_N$k*". xsxX7jRVbAAʯKҎU3)zSNN _'s?f)6X!%ssAkʱ>qƷb hg %n ~p1REGMHH=BJiy[<5 ǁJҖgKR*倳e~HUy)Ag,K)`Vw6bRR:qL#\rclK/$sh*$ 6덤 KԖc 3Z9=Ɣ=o>X Ώ"1 )a`SJJ6k(<c e{%kϊP+SL'TcMJWRm ŏ"w)qc ef꒵i?b7b('"2r%~HUS1\<(`1Wx9=8HY9m:X18bgD1u ~|H;K-Uep,, C1 RV.MR5άh,tWO8WC$ XRVsQS]3GJ|12 [vM :k#~tH30Rf-HYݺ-`I9%lIDTm\ S{]9gOڒMNCV\G*2JRŨ;Rҏ^ڽ̱mq1Eu?To3I)y^#jJw^Ńj^vvlB_⋌P4x>0$c>K†Aļ9s_VjTt0l#m>E-,,x,-W)سo&96RE XR.6bXw+)GAEvL)͞K4$p=Ũi_ѱOjb HY/+@θH9޼]Nԥ%n{ &zjT? Ty) s^ULlb,PiTf^<À] 62R^V7)S!nllS6~͝V}-=%* ʻ>G DnK<y&>LPy7'r=Hj 9V`[c"*^8HpcO8bnU`4JȪAƋ#1_\ XϘHPRgik(~G~0DAA_2p|J묭a2\NCr]M_0 ^T%e#vD^%xy-n}-E\3aS%yN!r_{ )sAw ڼp1pEAk~v<:`'ӭ^5 ArXOI驻T (dk)_\ PuA*BY]yB"l\ey hH*tbK)3 IKZ򹞋XjN n *n>k]X_d!ryBH ]*R 0(#'7 %es9??ښFC,ՁQPjARJ\Ρw K#jahgw;2$l*) %Xq5!U᢯6Re] |0[__64ch&_}iL8KEgҎ7 M/\`|.p,~`a=BR?xܐrQ8K XR2M8f ?`sgWS%" Ԉ 7R%$ N}?QL1|-эټwIZ%pvL3Hk>,ImgW7{E xPHx73RA @RS CC !\ȟ5IXR^ZxHл$Q[ŝ40 (>+ _C >BRt<,TrT {O/H+˟Pl6 I B)/VC<6a2~(XwV4gnXR ϱ5ǀHٻ?tw똤Eyxp{#WK qG%5],(0ӈH HZ])ג=K1j&G(FbM@)%I` XRg ʔ KZG(vP,<`[ Kn^ SJRsAʠ5xՅF`0&RbV tx:EaUE/{fi2;.IAwW8/tTxAGOoN?G}l L(n`Zv?pB8K_gI+ܗ #i?ޙ.) p$utc ~DžfՈEo3l/)I-U?aԅ^jxArA ΧX}DmZ@QLےbTXGd.^|xKHR{|ΕW_h] IJ`[G9{).y) 0X YA1]qp?p_k+J*Y@HI>^?gt.06Rn ,` ?);p pSF9ZXLBJPWjgQ|&)7! HjQt<| ؅W5 x W HIzYoVMGP Hjn`+\(dNW)F+IrS[|/a`K|ͻ0Hj{R,Q=\ (F}\WR)AgSG`IsnAR=|8$}G(vC$)s FBJ?]_u XRvύ6z ŨG[36-T9HzpW̞ú Xg큽=7CufzI$)ki^qk-) 0H*N` QZkk]/tnnsI^Gu't=7$ Z;{8^jB% IItRQS7[ϭ3 $_OQJ`7!]W"W,)Iy W AJA;KWG`IY{8k$I$^%9.^(`N|LJ%@$I}ֽp=FB*xN=gI?Q{٥4B)mw $Igc~dZ@G9K X?7)aK%݅K$IZ-`IpC U6$I\0>!9k} Xa IIS0H$I H ?1R.Чj:4~Rw@p$IrA*u}WjWFPJ$I➓/6#! LӾ+ X36x8J |+L;v$Io4301R20M I$-E}@,pS^ޟR[/s¹'0H$IKyfŸfVOπFT*a$I>He~VY/3R/)>d$I>28`Cjw,n@FU*9ttf$I~<;=/4RD~@ X-ѕzἱI$: ԍR a@b X{+Qxuq$IЛzo /~3\8ڒ4BN7$IҀj V]n18H$IYFBj3̵̚ja pp $Is/3R Ӻ-Yj+L;.0ŔI$Av? #!5"aʄj}UKmɽH$IjCYs?h$IDl843.v}m7UiI=&=0Lg0$I4: embe` eQbm0u? $IT!Sƍ'-sv)s#C0:XB2a w I$zbww{."pPzO =Ɔ\[ o($Iaw]`E).Kvi:L*#gР7[$IyGPI=@R 4yR~̮´cg I$I/<tPͽ hDgo 94Z^k盇΄8I56^W$I^0̜N?4*H`237}g+hxoq)SJ@p|` $I%>-hO0eO>\ԣNߌZD6R=K ~n($I$y3D>o4b#px2$yڪtzW~a $I~?x'BwwpH$IZݑnC㧄Pc_9sO gwJ=l1:mKB>Ab<4Lp$Ib o1ZQ@85b̍ S'F,Fe,^I$IjEdù{l4 8Ys_s Z8.x m"+{~?q,Z D!I$ϻ'|XhB)=…']M>5 rgotԎ 獽PH$IjIPhh)n#cÔqA'ug5qwU&rF|1E%I$%]!'3AFD/;Ck_`9 v!ٴtPV;x`'*bQa w I$Ix5 FC3D_~A_#O݆DvV?<qw+I$I{=Z8".#RIYyjǪ=fDl9%M,a8$I$Ywi[7ݍFe$s1ՋBVA?`]#!oz4zjLJo8$I$%@3jAa4(o ;p,,dya=F9ً[LSPH$IJYЉ+3> 5"39aZ<ñh!{TpBGkj}Sp $IlvF.F$I z< '\K*qq.f<2Y!S"-\I$IYwčjF$ w9 \ߪB.1v!Ʊ?+r:^!I$BϹB H"B;L'G[ 4U#5>੐)|#o0aڱ$I>}k&1`U#V?YsV x>{t1[I~D&(I$I/{H0fw"q"y%4 IXyE~M3 8XψL}qE$I[> nD?~sf ]o΁ cT6"?'_Ἣ $I>~.f|'!N?⟩0G KkXZE]ޡ;/&?k OۘH$IRۀwXӨ<7@PnS04aӶp.:@\IWQJ6sS%I$e5ڑv`3:x';wq_vpgHyXZ 3gЂ7{{EuԹn±}$I$8t;b|591nءQ"P6O5i }iR̈́%Q̄p!I䮢]O{H$IRϻ9s֧ a=`- aB\X0"+5"C1Hb?߮3x3&gşggl_hZ^,`5?ߎvĸ%̀M!OZC2#0x LJ0 Gw$I$I}<{Eb+y;iI,`ܚF:5ܛA8-O-|8K7s|#Z8a&><a&/VtbtLʌI$I$I$I$I$I$IRjDD%tEXtdate:create2022-05-31T04:40:26+00:00!Î%tEXtdate:modify2022-05-31T04:40:26+00:00|{2IENDB`Mini Shell

HOME


Mini Shell 1.0
DIR:/proc/thread-self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/guppy/etc/
Upload File :
Current File : //proc/thread-self/root/opt/cloudlinux/venv/lib/python3.11/site-packages/guppy/etc/RE.py
import functools

from guppy.etc.RE_Rect import chooserects
from guppy.etc.IterPermute import iterpermute


class InfiniteError(Exception):
    pass


class WordsMemo:
    def __init__(self, re, ch):
        self.re = re
        self.ch = ch
        self.xs = {}
        self.N = 0

    def get_words_of_length(self, N):
        # Return a list of words of length up to N
        if N not in self.xs:
            self.xs[N] = self.re.get_words_of_length_memoized(N, self)
        return self.xs[N]

    def get_words_of_length_upto(self, N):
        # Return all words of length up to N, in the form
        # [(0, <list of words of length 0>),
        #  (1, <list of words of length 0>),
        #  ...]
        xsu = []
        for i in range(N+1):
            xs = self.get_words_of_length(i)
            if xs:
                xsu.append((i, xs))
        return xsu


REBASE = tuple


class RE(REBASE):
    # Regular expression nodes
    # The operators are choosen to be compatible with Pythonic standards:
    #   o sets               : using | for union
    #   o strings, sequences : using + for concatenation.
    #
    # This differs from mathematical presentations of regular
    # expressions where + is the union, but it seemed more important
    # to not confuse the Python usage.

    # There are also operators for closure x*, x+ that can not be
    # represented directly in Python expressions and these were choosen
    # to use a function call syntax.
    # The following table summarizes the operators.

    #   RE node expr    re lib          mathematical    name

    #   x + y           x y             x y             Concatenation
    #   x | y           x | y           x + y           Union
    #   x('*')          x*              x*              Kleene closure
    #   x('+')          x+              x+              Positive closure
    #   x('?')          x?

    _re_special = r'.^$*+?{}\[]|()'

    def __add__(a, b):
        if isinstance(b, RE):
            return concat(a, b)
        else:
            return Concatenation(a, Single(b))

    def __call__(a, *args, **kwds):
        if not kwds:
            if args == ('*',):
                return KleeneClosure(a)
            elif args == ('+',):
                return PositiveClosure(a)
            elif args == ('?',):
                return EpsilonOrOne(a)
        raise ValueError(
            "Argument to regular expression must be '*' or '+' or '?'")

    def __hash__(self):
        return hash((self._name, tuple(self)))

    def __eq__(a, b):
        return (a._name == b._name and
                tuple(a) == tuple(b))

    def __lt__(a, b):
        if a._name == b._name:
            return tuple(a) < tuple(b)
        else:
            return a._name < b._name

    def __or__(a, b):
        return Union(a, b)

    def get_num_closures(self):
        ns = 0
        for ch in self:
            ns += ch.get_num_closures()
        return ns

    def get_num_syms(self):
        ns = 0
        for ch in self:
            ns += ch.get_num_syms()
        return ns

    def get_sum_sym_lengths(self):
        ns = 0
        for ch in self:
            ns += ch.get_sum_sym_lengths()
        return ns

    def get_words_memo(self):
        ch = [x.get_words_memo() for x in self]
        return WordsMemo(self, ch)

    def get_words_of_length(self, N):
        xs = self.get_words_memo()
        return xs.get_words_of_length(N)

    def mapchildren(self, f):
        return self.__class__(*[f(x) for x in self])

    def regexpform(self):
        return self.mappedrepr(regexpname)

    def reversed(self):
        return self.mapchildren(lambda x: x.reversed())

    def rempretup(self):
        def f(x):
            if isinstance(x, Seq):
                if x is not Epsilon and isinstance(x[0], tuple):
                    ws = x[1:]
                    return Seq(*ws)
                else:
                    return x
            return x.mapchildren(f)

        return f(self)

    def seqatoms(self):
        sa = []
        self.apseqatoms(sa.append)
        return sa

    def sequni(self):
        d = {}
        us = []

        def ap(x):
            if x not in d:
                d[x] = 1
                us.append(x)
        self.apseq(ap)
        return Union(*us)

    def shform(self, conc=' '):
        r = self.mappedrepr(regexpname)
        if conc != ' ':
            r = conc.join(r.split(' '))
        return r

    def simplified(self, *a, **k):
        return self

    def simulform(self):
        def f(x):
            if x == '':
                return '()'
            return str(x)
        return self.mappedrepr(f)


def regexpname(s):
    if s == '':
        return '()'
    special = RE._re_special
    ren = []
    for c in str(s):
        if c in special+"', ":
            #c = r'\%s'%c
            c = ''
        ren.append(c)
    return ''.join(ren)


class Seq(RE):
    _priority = 0
    _name = 'Seq'

    def __new__(clas, *symbols):
        if not symbols:
            return Epsilon
        return REBASE.__new__(clas, symbols)

    def __repr__(self):
        return '%s(%s)' % (self.__class__.__name__, ', '.join(['%r' % (x,) for x in self]))

    def apseq(self, ap):
        ap(self)

    def apseqatoms(self, ap):
        for x in self:
            ap(Single(x))

    def get_num_closures(self):
        return 0

    def get_num_syms(self):
        return len(self)

    def get_sum_sym_lengths(self):
        s = 0
        for x in self:
            s += len(str(x))
        return s

    def get_words_memo(self):
        return WordsMemo(self, ())

    def get_words_of_length_memoized(self, N, memo):
        if N == len(self):
            return [self]
        else:
            return []

    def limited(self, N):
        return self

    def mappedrepr(self, f):
        if not self:
            return f('')
        return ' '.join(['%s' % (f(x),) for x in self])

    def reversed(self):
        r = list(self)
        r.reverse()
        return self.__class__(*r)

    def unionsplitted(self):
        return [self]


def Single(symbol):
    return REBASE.__new__(Seq, (symbol,))


Epsilon = REBASE.__new__(Seq, ())


def concat(*args):
    args = [x for x in args if x is not Epsilon]
    if len(args) < 2:
        if not args:
            return Epsilon
        return args[0]
    return REBASE.__new__(Concatenation, args)


class Concatenation(RE):
    _priority = 2
    _name = 'Concat'

    def __new__(clas, *args):
        if len(args) < 2:
            if not args:
                return Epsilon
            return args[0]
        return REBASE.__new__(clas, args)

    def __repr__(self):
        rs = []
        for ch in self:
            r = '%r' % (ch,)
            if ch._priority > self._priority:
                r = '(%s)' % (r,)
            rs.append(r)
        return ' + '.join(rs)

    def apseq(self, ap):
        uns = [x.sequni() for x in self]
        ixs = [0]*len(uns)
        while 1:
            xs = []
            for (i, us) in enumerate(uns):
                for x in us[ixs[i]]:
                    if x is not Epsilon:
                        xs.append(x)
            ap(Seq(*xs))
            j = 0
            for j, ix in enumerate(ixs):
                ix += 1
                if ix >= len(uns[j]):
                    ix = 0
                ixs[j] = ix
                if ix != 0:
                    break
            else:
                break

    def apseqatoms(self, ap):
        for x in self:
            x.apseqatoms(ap)

    def get_words_of_length_memoized(self, N, memo):
        chxs = []
        for ch in memo.ch:
            chxs.append(ch.get_words_of_length_upto(N))
        xs = []
        seen = {}

        def ads(xx, i, n):
            if i == len(chxs):
                if n == N:
                    for toconc in iterpermute(*xx):
                        conc = simple_Concatenation(toconc)
                        if conc not in seen:
                            xs.append(conc)
                            seen[conc] = 1
            else:
                for m, x in chxs[i]:
                    if n + m <= N:
                        ads(xx + [x], i + 1, n + m)

        ads([], 0, 0)
        return xs

    def limited(self, N):
        return Concatenation(*[x.limited(N) for x in self])

    def mappedrepr(self, f):
        rs = []
        for ch in self:
            r = ch.mappedrepr(f)
            if ch._priority > self._priority:
                r = '(%s)' % (r,)
            rs.append(r)
        return ' '.join(rs)

    def reversed(self):
        r = [x.reversed() for x in self]
        r.reverse()
        return self.__class__(*r)

    def simplified(self, *a, **k):
        conc = [x.simplified(*a, **k) for x in self]
        sa = []
        for c in conc:
            for a in c.seqatoms():
                sa.append(a)
        return simple_Concatenation(sa)

    def unionsplitted(self):
        runs = []
        uns = []
        for (i, x) in enumerate(self):
            us = x.unionsplitted()
            if len(us) > 1:
                uns.append((i, us))
        if not uns:
            return [self]
        ixs = [0]*len(uns)
        ch = list(self)
        while 1:
            xs = []
            i0 = 0
            for j, (i, us) in enumerate(uns):
                xs.extend(ch[i0:i])
                ix = ixs[j]
                xs.append(us[ix])
                i0 = i + 1
            xs.extend(ch[i0:])
            runs.append(concat(*xs))

            j = 0
            for j, ix in enumerate(ixs):
                ix += 1
                if ix >= len(uns[j][1]):
                    ix = 0
                ixs[j] = ix
                if ix != 0:
                    break
            else:
                return runs


class SimplifiedConcatenation(Concatenation):
    def simplified(self, *a, **k):
        return self


def conclosure(conc):
    # Simplification noted Mar 5 2005
    # Simplify ... b b* ... or ... b* b ... to ... b+ ...
    # conc is a sequence of regular expressions

    seen = {}
    nconc = []
    w0 = None
    for w in conc:
        if w0 is not None:
            if (w._name == '*' and      # Not isinstance(KleeneClosure), would catch PositiveClosure
                    w[0] == w0):
                w = PositiveClosure(w0)
            elif (w0._name == '*' and
                  w0[0] == w):
                w = PositiveClosure(w)
            else:
                if w0 is not None:
                    nconc.append(w0)
        w0 = w
    if w0 is not None:
        nconc.append(w0)
    return nconc


def simple_Concatenation(conc):
    if len(conc) > 1:
        conc0 = conc
        conc = conclosure(conc)
    nconc = []
    i = 0
    j = 0
    while i < len(conc):
        e = conc[i]
        if not isinstance(e, Seq):
            i += 1
            nconc.append(e)
            continue
        j = i
        while j < len(conc):
            if not isinstance(conc[j], Seq):
                break
            j += 1
        if j == i + 1:
            nconc.append(e)
        else:
            syms = []
            for k in range(i, j):
                e = conc[k]
                syms.extend(list(e))
            nconc.append(Seq(*syms))
        i = j
    if len(nconc) > 1:
        return Concatenation(*nconc)
    elif nconc:
        return nconc[0]
    else:
        return Epsilon


gauges = [
    lambda x:x.get_num_syms(),
    lambda x:x.get_num_closures(),
    lambda x:x.get_sum_sym_lengths()
]


def simpleunion(lines):
    choosen = chooserects(lines, gauges)
    have_epsilon = 0
    while 1:
        if len(choosen) == 1 and (choosen[0].width == 0 or len(choosen[0].lines) == 1):
            us = []
            for line in choosen[0].lines:
                if line:
                    us.append(line)
                else:
                    have_epsilon = 1
            break
        us = []
        for r in choosen:
            conc = r.get_common_part()
            olines = r.get_uncommons()
            u = simpleunion(olines)
            if u is not Epsilon:
                if r.dir == -1:
                    conc = [u]+conc
                else:
                    conc = conc + [u]
            if conc:
                us.append(conc)
            else:
                have_epsilon = 1
            assert not isinstance(us[-1], str)

        choosen = chooserects(us, gauges)

    if len(us) > 1:
        nus = [simple_Concatenation(line) for line in us]
        u = SimplifiedUnion(*nus)
    elif us:
        u = simple_Concatenation(us[0])
    else:
        u = None
    if have_epsilon:
        if u is not None:
            u = simple_EpsilonOrOne(u)
        else:
            u = Epsilon

    return u


class Union(RE):
    _priority = 3
    _name = 'Union'

    def __new__(clas, *args):
        return REBASE.__new__(clas, args)

    def __repr__(self):
        rs = []
        for ch in self:
            r = '%r' % (ch,)
            if ch._priority > self._priority:
                r = '(%s)' % r
            rs.append(r)
        return ' | '.join(rs)

    def apseq(self, ap):
        for c in self:
            c.apseq(ap)

    def apseqatoms(self, ap):
        for x in self:
            x.apseqatoms(ap)

    def get_words_of_length_memoized(self, N, memo):
        xs = []
        seen = {}
        for ch in memo.ch:
            for x in ch.get_words_of_length(N):
                if x not in seen:
                    seen[x] = 1
                    xs.append(x)
        return xs

    def limited(self, N):
        uni = [x.limited(N) for x in self]
        for i, x in enumerate(uni):
            if x is not self[i]:
                return self.__class__(*uni)
        return self

    def mappedrepr(self, f):
        rs = []
        for ch in self:
            r = '%s' % (ch.mappedrepr(f),)
            if ch._priority > self._priority:
                r = '(%s)' % r
            rs.append(r)
        return ' | '.join(rs)

    def simplified(self, args=None, *a, **k):
        if args is None:
            args = [x.simplified() for x in self.unionsplitted()]
            #args = [x for x in self.unionsplitted()]

        # Create a simplfied union
        # Assuming args are simplified, non-unions

        ch = [a.seqatoms() for a in args]
        return simpleunion(ch)

    def unionsplitted(self):
        us = []
        for x in self:
            us.extend(list(x.unionsplitted()))
        return us


class SimplifiedUnion(Union):
    def simplified(self, *a, **k):
        return self


class Called(RE):
    _priority = 1

    def __new__(clas, arg):
        return REBASE.__new__(clas, (arg,))

    def __repr__(self):
        ch = self[0]
        r = '%r' % (ch,)
        if ch._priority > self._priority:
            r = '(%s)' % r
        return "%s(%r)" % (r, self._name)

    def apseqatoms(self, ap):
        ap(self)

    def get_num_closures(self):
        return 1 + self[0].get_num_closures()

    def mappedrepr(self, f):
        ch = self[0]
        r = ch.mappedrepr(f)
        if (ch._priority > self._priority
                or isinstance(ch, Seq) and len(ch) > 1):
            r = '(%s)' % r
        return "%s%s" % (r, self._name)

    def simplified(self, *a, **k):
        return self.__class__(self[0].simplified(*a, **k))


class Closure(Called):
    def get_words_of_length_memoized(self, N, memo):
        if N == 0:
            return [Epsilon]
        if N == 1:
            return memo.ch[0].get_words_of_length(1)
        xs = []
        seen = {}
        for i in range(1, N):
            a = memo.get_words_of_length(i)
            b = memo.get_words_of_length(N-i)
            for ai in a:
                for bi in b:
                    aibi = simple_Concatenation((ai, bi))
                    if aibi not in seen:
                        xs.append(aibi)
                        seen[aibi] = 1
        for x in memo.ch[0].get_words_of_length(N):
            if x not in seen:
                xs.append(x)
                seen[x] = 1
        return xs

    def unionsplitted(self):
        return [self]


class KleeneClosure(Closure):
    _name = '*'

    def apseq(self, ap):
        raise InfiniteError(
            'apseq: Regular expression is infinite: contains a Kleene Closure')

    def limited(self, N):
        if N == 0:
            return Epsilon
        cl = self[0].limited(N)
        uni = []
        for i in range(N+1):
            toconc = [cl]*i
            uni.append(Concatenation(*toconc))
        return Union(*uni)

    def simplified(self, *a, **k):
        return simple_KleeneClosure(self[0].simplified(*a, **k))


def simple_KleeneClosure(x):
    # (b+)* -> b*
    if x._name == '+':
        return simple_KleeneClosure(x[0])
    return KleeneClosure(x)


class PositiveClosure(Closure):
    _name = '+'

    def apseq(self, ap):
        raise InfiniteError(
            'apseq: Regular expression is infinite: contains a Positive Closure')

    def apseqatoms(self, ap):
        self[0].apseqatoms(ap)
        simple_KleeneClosure(self[0]).apseqatoms(ap)

    def get_words_of_length_memoized(self, N, memo):
        if N <= 1:
            return memo.ch[0].get_words_of_length(N)
        return Closure.get_words_of_length_memoized(self, N, memo)

    def limited(self, N):
        a = self[0].limited(N)
        b = KleeneClosure(self[0]).limited(N)
        return Concatenation(a, b)


class EpsilonOrOne(Called):
    _name = '?'

    def apseq(self, ap):
        ap(Epsilon)
        self[0].apseq(ap)

    def get_words_of_length_memoized(self, N, memo):
        if N == 0:
            return [Epsilon]
        return memo.ch[0].get_words_of_length(N)

    def limited(self, N):
        x = self[0].limited(N)
        if x is not self[0]:
            self = self.__class__(x)
        return self

    def simplified(self, *a, **k):
        return simple_EpsilonOrOne(self[0].simplified(*a, **k))

    def unionsplitted(self):
        return [Epsilon] + list(self[0].unionsplitted())


def simple_EpsilonOrOne(x):
    # (a+)? -> a*

    if x._name == '+':
        return simple_KleeneClosure(x)

    # (a*)? -> a*
    if x._name == '*':
        return x

    return EpsilonOrOne(x)


class RegularSystem:

    def __init__(self, table, Start, final_states):
        self.table = table
        self.Start = Start
        self.Final = '358f0eca5c34bacdfbf6a8ac0ccf84bc'
        self.final_states = final_states

    def pp(self):

        def statename(state):
            try:
                name = self.names[state]
            except KeyError:
                name = str(state)
            return name

        def transname(trans):
            name = trans.simulform()
            if trans._priority > 1:
                name = '(%s)' % (name,)
            return name

        self.setup_names()

        X = self.X

        xs = [self.Start]+self.order
        xs.append(self.Final)
        for Xk in xs:
            if Xk not in X:
                continue
            print('%3s = ' % (statename(Xk),), end=' ')
            Tk = X[Xk]
            es = []
            for Xj in xs:
                if Xj in Tk:
                    es.append('%s %s' % (transname(Tk[Xj]), statename(Xj)))
            if es:
                print(' | '.join(es))
            else:
                print()

    def setup_equations(self):
        table = self.table
        final_states = self.final_states
        Final = self.Final
        self.X = X = {Final: {}}
        for Xi, transitions in list(table.items()):
            X[Xi] = Ti = {}
            for (symbol, Xj) in list(transitions.items()):
                Ti.setdefault(Xj, []).append(Single(symbol))
            for Xj, Aij in list(Ti.items()):
                if len(Aij) > 1:
                    Aij.sort()
                    Aij = Union(*Aij)
                else:
                    Aij = Aij[0]
                Ti[Xj] = Aij
            if Xi in final_states:
                Ti[Final] = Epsilon

    def setup_order(self):
        def dists(X, start):
            i = 0
            S = {start: i}
            news = [start]
            while news:
                oldnews = news
                news = []
                i += 1
                for s in oldnews:
                    if s not in X:
                        continue
                    for t in X[s]:
                        if t not in S:
                            news.append(t)
                            S[t] = i
            return S

        def start_distance(x):
            return start_dists[x]

        def sumt(f):
            memo = {}

            def g(x):
                if x in memo:
                    return memo[x]
                s = 0.0
                for y in X[x]:
                    s += f(y)
                memo[x] = s
                return s
            return g

        def cmp3(x, y):
            # Comparison for the sorting of equation solving order
            # First in list = solved last

            if x is y:
                return 0

            # Equations with more terms are resolved later
            c = len(X[y]) - len(X[x])
            if c:
                return c

            # The equations with terms more distant from start node will be resolved earlier
            i = 0
            while i < 10:  # 4 was enough with tests so far at Feb 24 2005
                try:
                    f = sumdists[i]
                except IndexError:
                    f = sumt(sumdists[i-1])
                    sumdists.append(f)
                c = f(x) - f(y)
                if c:
                    return c
                i += 1

            return (x > y) - (x < y)

        sumdists = [start_distance]
        X = self.X
        Start = self.Start
        Final = self.Final
        start_dists = dists(X, Start)
        order = [x for x in start_dists if x is not Start and x is not Final]
        order.sort(key=functools.cmp_to_key(cmp3))
        self.order = order

    def setup_names(self):
        try:
            self.order
        except AttributeError:
            self.setup_order()
        self.names = {}
        self.names[self.Start] = 'X0'

        for i, s in enumerate(self.order):
            self.names[s] = 'X%d' % (i+1)
        self.names[self.Final] = 'Final'

    def solve(self):
        # Set up equation system

        self.setup_equations()
        self.setup_order()

        X = self.X
        Start = self.Start
        Final = self.Final
        todo = list(self.order)

        # Solve equation system

        while todo:
            Xk = todo.pop()
            Tk = X[Xk]

            if Xk in Tk:
                # Recursive equation
                # Eliminate Akk Xk, using Adler's theorem
                # Given:
                # Xk = Ak0 X0 | ... Akk Xk |.. Akn Xkn
                # we get:
                # Xk = Akk* (Ak0 X0 | ... <no Xk> ... | Akn Xn)
                # which we evaluate to:
                # Xk = Bk0 X0 | ... Bkn Xn
                # where coefficients get the new values
                # Bki := Akk* Aki

                Akk = Tk[Xk]
                del Tk[Xk]

                AkkStar = Akk('*')
                for Xi, Aki in list(Tk.items()):
                    Bki = AkkStar + Aki
                    Tk[Xi] = Bki

            # Substitute Xk in each other equation in X
            # containing Xk, except eqv. Xk itself, which will not be used any more..

            del X[Xk]

            for Xj, Tj in list(X.items()):
                Bjk = Tj.get(Xk)
                if Bjk is None:
                    continue
                del Tj[Xk]
                for Xji, Tk_Xji in list(Tk.items()):
                    Cji = (Bjk + Tk_Xji)
                    Bji = Tj.get(Xji)
                    if Bji is not None:
                        Cji = Bji | Cji
                    Tj[Xji] = Cji

        # The equation system is now solved
        # The result is in Final term of Start equation

        return X[Start][Final]


Nothing = Union()


def SolveFSA(fsa):
    RS = RegularSystem(fsa.table, fsa.start_state, fsa.final_states)
    return RS.solve()